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Chapter 1

Introduction

Saturn is a system for the static analysis of programs. Saturn aims to be both highly
scalable and precise, with the goal of eventually being able to verify the absence of
certain kinds of bugs in real systems. Saturn is based on three main ideas:

• Saturn is summary-based: each function f is analyzed separately, producing
a summary of f ’s behavior. At call sites for f , only f ’s summary is used.
Summary information may also be attached to types, global variables and
other values.

• Saturn is also constraint-based: analysis is expressed as a system of con-
straints describing how the state at one program point is related to the state
at adjacent program points. The primary constraint language used in Sat-
urn is boolean satisfiability, with each bit accessed by a procedure or loop
represented by a distinct boolean variable.

• Program analyses in Saturn are expressed in a logic programming language
with support for constructing constraints and accessing summaries.

In combination, these ideas give Saturn the ability to succinctly express precise
analyses while also providing the ability to scale to very large programs. The
use of constraints and logic programs allows succinct analyses, which are easier to
understand and verify correct than analyses written at a lower level of abstraction.
Bit-level path-sensitive analysis gives precision, while analyzing a single function at
a time and summarization give scalability—Saturn is routinely used to run whole-
program analyses on the entire Linux kernel (with more than 6MLOC) and other
large open source projects. Collectively these analyses have found thousands of
previously unknown bugs in such projects.

Another important Saturn feature is a parallel backend, allowing multiple func-
tions to be analyzed at the same time; clusters of up to 100 processors have been
utilized effectively, depending on program size and the computational intensity of
the analysis. All Saturn analyses are currently for C programs, though the ideas
could be applied to other languages.
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CLP analyses

CLP interpreter

C program

C frontend

C syntax databases

Summary databases

Constraint solvers

Summary/error reports

User interface

Figure 1.1: Saturn toolchain structure

This document provides an overview of the logic programming language, various
Saturn analyses, as well as the tools that, while not part of any static analysis, are
needed to run most or all analyses. The Saturn project is very much a work in
progress, and it is possible (even likely) that this document has errors, omissions,
and inconsistencies; the authors would appreciate notification of any such problems
the reader may find.

1.1 Saturn Design

Figure 1.1 shows at a high level the Saturn toolchain. Saturn currently uses CIL,
a full C front-end widely used in program analysis research. The Saturn interface
to CIL encodes the program’s abstract syntax trees as sets of predicates, storing
them all in a few syntax databases. A program analysis, written in Saturn’s Ca-
lypso programming language (extension .clp), is then run on each function in the
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C syntax predicates

CFG construction Solver predicates

Memory model

Alias analysis

NULL dereference analysis

Example locking analysis

Figure 1.2: Saturn analyses structure

syntax databases by the Calypso interpreter, constructing constraints and querying
constraint solvers plugged into the interpreter, constructing summary information
and producing error reports. These reports can then be viewed either as plaintext
or via an HTML-based UI, depending on the analysis.

Each Calypso analysis is thus responsible for generating summary information
and reports using only the source syntax. To ease this, core Calypso components
are used to construct higher level representations of the source, including control
flow graph(s) for each function and a path-sensitive memory model of the points-to
and integer value relationships at each program point. Most Saturn analyses build
on top of one or both of these core components; Figure 1.2 shows these components
and their relation to the included analyses.
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Chapter 2

Quickstart

This chapter gives a quick example of how to run a complete analysis and examine
the results. These instructions assume you are using a Linux system, that you have
installed Saturn as per the INSTALL file instructions, and that you have added the
clpa/bin directory to your path.

The bftpd package is an implementation of a simple FTP server. Download a
copy of bftpd-1.6.tar.gz from http://saturn.stanford.edu/misc, extract the
files, and run configure:

tar xvf bftpd-1.6.tar.gz
cd bftpd-1.6
./configure

The next step is to gather the source files for analysis. Because build processes can
be complex, and are complex for large projects, the only reliable way to find the
source files actually used to build the system is to monitor the build process itself.
Saturn has a tool clpamake.pl just for this purpose; see Section 7.3.2 for more
information. From the same directory, run

clpamake.pl -sources=. -root=.

This command will finish quickly and add a sub-directory logic to the current
directory. Change into the logic directory and examine its contents:

cd logic
ls

You will see a number of .db files:

cil_body.db cil_enum.db cil_init.db process.db
cil_comp.db cil_glob.db ppfile.db

These are Saturn databases containing sets of facts to be used in subsequent analyses
of this program. The initial set of databases generated by clpamake.pl encode the

11
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program’s abstract syntax tree. The following command run’s Saturn’s null deref-
erence analysis, which warns of possible NULL pointer dereferences. This analysis
will likely take a few minutes to execute. In the logic directory, run

clpa --no-fixpoint --timeout 60 PATH_TO_CLPA/analysis/null/null.clp

The --no-fixpoint flag analyzes each function once and --timeout 60 instructs
the analyzer to spend no more than 60 seconds on each function. The null derefer-
ence analysis prints out the names of functions as it analyzes them, along with any
errors it detects. The first report is on line 121 of bftpd-1.6/options.c:

@121 red Possible NULL dereference of endp . . .

The source code around this line is:

120: if (grp->users)
121: endp = endp->next = malloc(sizeof(struct list_of_struct_passwd));
122: else
123: grp->users = endp = malloc(sizeof(struct list_of_struct_passwd));

The questionable expression is the dereference of endp in endp->next. This line
appears in a loop and a quick perusal of the code reveals that endp is always NULL
on entry to the loop. If the dereference is safe, then, it must be because grp->users
is NULL if endp is NULL. But there is no relationship between grp->users and endp
in this code; if they are correlated in some way it is not enforced in options.c.
While we cannot state for certain that this report is a bug without more detailed
knowledge of the program, it is at least suspicious.

The tool reports a possible error at one other line (line 102) in the same fileoptions.c.
This error report is quite similar to the first one discussed above.



Chapter 3

Tutorial

This chapter gives a tutorial overview of a Saturn analysis. The tutorial is intended
to be relatively self-contained; it should be possible to get a general idea of how
Saturn analyses are written and used by reading only the tutorial if the reader has
some background in either program analysis or logic programming. Details omitted
or only alluded to in this presentation are discussed in subsequent chapters.

We present the design of a locking analysis, a safety property that has become
a standard example in the software verification literature. Consider a thread that
manipulates a lock l. The thread should never lock l twice without an intervening
unlock, or else the single thread may deadlock the whole system.1 Similarly, a thread
should should not unlock l twice without an intervening lock acquire. The goal of
the analysis is to identify individual locking/unlocking operations in a program that
may violate these specifications. Note that this is not a concurrency property, as
we are only focusing on the behavior of a single thread.

In the directory ‘analysis/locking’ there are two versions of the locking analysis
‘locking.clp’ and ‘simplelocking.clp’. In the same directory there are also several in-
structive example programs in the regression test directories ‘baseXXX’. We present
the programs in an order natural for discussion, not in the line order of the programs
themselves.

We begin with ‘simplelocking.clp’; a copy of the code is included in Appendix A.
The first few lines

% Path-insensitive interprocedural locking analysis.

import "../memory/scalar_sat.clp".

analyze session_name("cil_body").

show several features of Calypso, the logic programming language in which Saturn
program analyses are written. The first line is a comment, indicated by the leading

1We assume that locks are not reentrant—i.e., a thread cannot acquire again a lock it already
holds.

13
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%. The import directive includes the file ‘memory/scalar sat.clp’ in the current
program. It is typical (and encouraged) for Saturn analyses to be built out of hier-
archy of modules, each of which imports the other modules that it needs. In this
case, while it is not obvious from the line above, the locking analysis is importing
Saturn’s memory model (Section 5.3), which provides a great deal of functionality
and is itself built from several other modules. Most importantly, the memory model
describes, for each function, all the locations accessed by the function’s body, alias-
ing information, and the path-sensitive conditions under which each node in the
function’s control-flow graph is reached and each location is written. The memory
model is parameterized by the representation of integers and other scalar values,
and there are several choices for how to model such values and evaluate constraints
over them. In this case, ‘scalar sat.clp’ specifies that integer values and formulas
should be converted to bit vectors and constraints evaluated using a SAT solver
(Section 5.3.4).

The analyze directive tells the Calypso interpreter what sessions to analyze.
For scalability, Saturn analyses do not analyze the entire program at once, nor is
a representation of the entire program ever constructed in main memory. Instead,
parts (sessions) of the program are analyzed separately and the analysis computes
summaries for each part. The cil body sessions are complete function bodies. An
alternative, which is easier to use in most cases, is the cil sum body session, which
splits out every loop into a separate control-flow graph; thus a cil sum body is
guaranteed to be loop free, with loops being modeled as tail-recursive function calls
(Section 5.2.3).

3.1 The Locking Property

The locking property can be encoded by considering every lock to be in one of three
states: unlocked, locked, or error. Consider two primitive locking operations, each
of which takes a single lock argument l:

• The function lock. If l is in the unlocked state then the function terminates
with l in the locked state. Otherwise the function terminates with l in the
error state.

• The function unlock. If l is in the locked state then the function terminates
with l in the unlocked state. Otherwise the function terminates with l in the
error state.

Note that the functions described above are not the actual names of the primitive
locking functions in any real system; we have simply chosen these names for clarity.
The same signatures would apply to the primitive lock and unlock functions in, say,
the kernel of an operating system.

The first part of the locking analysis implements the function signatures of the
locking primitives. The declaration

type lockstate ::= locked | unlocked | error.
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declares a new type lockstate with three constructors for the three lock states.
The analysis also declares several predicates (relations) that use lock states. Every
fact that can be reasoned about by the program analysis is an instance of some
predicate.

predicate state(P:pp,T:t_trace,S:lockstate,G:g_guard).

The predicate state takes four typed arguments; Calypso is strongly and statically
typed and the types of all predicate arguments must be declared by the programmer.
The notation X:t declares an argument of type t with mnemonic name X (the
name is optional documentation). The state predicate’s arguments include three
frequently used types:

• A pp is a program point, an identifier that uniquely names a point in a pro-
gram. Program points are created in the conversion of the initial abstract
syntax trees (produced directly by the front-end parser) to a control-flow
graph (Section 5.2.1).

• A t trace is a trace, which names a memory location or a set of memory
locations (e.g., arrays are treated as sets of memory locations). Analyses
mostly deal with traces as abstract locations and nothing more, though as we
shall see traces do have structure and in most analyses at least a few rules
will be concerned with the trace structure. Traces are defined by the memory
model (Section 5.3.1).

• A g guard is a boolean formula that captures a program condition, usually
the net effect of the predicates in if statements on some set of paths. Guards
are used to encode path sensitivity in an analysis. Guards are also defined by
the memory model (Section 5.3.4).

The interpretation of the state predicate is that at program point P, the lock at
memory location T is in state S whenever guard G is true.

The simple locking analysis is interprocedural and flow-sensitive. The full ex-
planation of the analysis can be divided into three parts:

• how function calls are modeled,

• how information is merged at control join points,

• how primitive instructions are modeled.

The first item is the interprocedural analysis, while the second and third together
constitute the intraprocedural part of the analysis.

3.2 Interprocedural Analysis

We begin with the interprocedural part of the analysis. Another predicate defined
by the locking analysis is
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predicate cedge(I:c_instr,T:t_trace,SIN:lockstate,SOUT:lockstate).

The type c instr is our first example of a type defined in a package, in this case
the translatecil package (see Section 8.11). A package is a collection of types,
predicates, and rules implemented in another language, such as C or OCaml (the
two languages that are currently supported); package translatecil describes all
the types and predicates that encode the CIL syntax for a C program. In the pred-
icate cedge, while the type c instr is any CIL instruction (assignments, assembly,
and function calls), in fact this predicate is only used to record information about
function calls—the name cedge stands for call edge. The meaning of the predicate
is that function call I maps the lock with trace T from initial lock state SIN to final
lock state SOUT. Information for specific call sites is computed via Calypso rules
that add new facts, instances of the cedge predicate. For example:

dircall(I,"lock"),
+cedge(I,drf{root{arg{0}}},locked,error),
+cedge(I,drf{root{arg{0}}},unlocked,locked).

All Calypso rules (and, indeed, rules in any logic programming language) de-
scribe how to infer new facts. Together they give a declarative specification for
inferring the full set of facts within a function; the Calypso interpreter simply ap-
plies the analysis rules in all possible places to infer new facts, until there are no
more rules that can be applied.

Most rules have a simple form such as the above, a comma-separated list of
predicates. The rule is evaluated by walking down it left to right. Predicates with a
+ in front of them are additions, and represent new facts which should be inferred,
added to the set of known facts. Predicates with no + in front are finds, indicating
that for any known fact matching the predicate, any variables such as I should be
instantiated and the rest of the rule evaluated. This rule introduces two other new
things:

• The predicate dircall(I,FN) is true if the instruction I is a direct call of
the function named FN (Section 5.2.1). A direct call means that the function
name FN appears explicitly in the program, as in lock(l), in constrast to an
indirect call through a pointer such as (*f)(l).

• The trace arguments to the cedge predicates indicate specific memory loca-
tions. Because we are specifying the locking semantics of the lock primitive,
we must say explicitly which memory location holds the affected lock. The
term trace is meant to suggest a trace or sequence of operations needed to
reach the location from some root, which is a location with a program name
such as a local or global variable or, in this case, a function argument. Thus,
drf{root{arg{0}}} is the dereference of the root arg{0}, the first argument
of the function.

With all of this in mind we can now explain what the rule means: For any instruction
I which is a direct call to the primitive function lock, then two facts are added. If
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the lock pointed to by the first argument of the call is locked on entry to I, then
the lock is in the error state on exit; i.e., there is a double-locking bug caused by
this call to lock. Similarly, if the lock pointed to by the first argument of the call is
unlocked on entry, then the lock is in the locked state on exit. The rule for direct
calls to unlock is similar:

dircall(I,"unlock"),
+cedge(I,drf{root{arg{0}}},locked,unlocked),
+cedge(I,drf{root{arg{0}}},unlocked,error).

Note that the trace drf{root{arg{0}}} is the location of the formal parameter in
the called function, not the location of the actual parameter that is passed from the
caller. We return to this point in Section 3.4.

For calls to functions other than the primitive locking operations we must com-
municate information between the caller and the callee. Each function computes
summary edges that describe its net locking behavior:

predicate sedge(T:t_trace,SIN:lockstate,SOUT:lockstate).

The interpretation of an sedge is that some function other than lock or unlock
may map a lock at location T that is in the SIN state on function entry to the SOUT
state on function exit. Note that there is no argument indicating the function the
predicate is talking about. We add this information using a session definition:

session sum_locking(FN:string) containing [sedge].

Sessions are the mechanism used to store summaries for interprocedural analysis.
While predicate instances represent individual facts, sessions represent sets of such
facts (in this case, only the sedge predicate) which can be directly updated or
queried by the analysis. When a function is being analyzed, it updates its own
summary (see below), and when calls to it are encountered, its summary is queried:

dircall(I,F), sum_locking(F)->sedge(T,SIN,SOUT), +cedge(I,T,SIN,SOUT).

This rule means that for any direct call to any function F, query F’s summary
information to determine what sedges it has, and then add new cedge facts in the
same manner as cedge facts were added for calls to lock and unlock.

So far we have discussed how summary information for a function F is propagated
to a call site for F. The other half of interprocedural analysis is how summary
information is computed for a function in the first place. The locking analysis
introduces another predicate

predicate trace_trans(T:t_trace,G:g_guard,SIN:lockstate,SOUT:lockstate).

which holds if the entire body for the currently analyzed function transitions a lock
at location T from an initial lock state SIN to a final lock state SOUT if guard G
holds. Computing the trace trans facts using the memory model and cedge facts
is the goal of the intraprocedural analysis, discussed starting in Section 3.3. The
rule for computing locking summaries is then:
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cil_curfn(F), trace_trans(T,SG,SIN,SOUT), guard_sat(SG),
+fedge(F,T,SIN,SOUT), +sum_locking(F)->sedge(T,SIN,SOUT).

The predicate cil curfn names the currently analyzed function; it is provided by
the translatecil package (Section 8.11). The predicate guard sat holds if its
boolean formula argument is satisfiable; it is provided by the memory model (Sec-
tion 5.3.4) as a wrapper for the boolean constraint solver interface in the solve sat
package (Section 8.8). Thus, this rule says that if function F maps trace T from state
SIN to SOUT under condition SG and there is some execution in which that condition
can be satisfied, then the transition is added to the function summary for F. This
rule is a typical example of the use of constraints in Saturn: we compute constraints
(normally boolean constraints but interfaces to other constraint theories are pro-
vided by other packages) and then at some point ask whether the constraints are
satisfiable. Unsatisfiable constraints represent only infeasible computations; in this
case we do not add a transition to the function summary if its associated guard is
unsatisfiable. Note also that this rule performs abstraction: we discard the guard
SG in the locking summary, effectively saying that the transition can always happen
and not just when SG is satisfied. Computing a very precise intraprocedural analysis
which is abstracted in procedure summaries for scalability and termination is also
typical of Saturn analyses.

Finally, the rule above uses a new predicate fedge with the same signature as
sedge except the function name. This is not a summary predicate, but is just used
in a query to print as output all matching facts that were added to the summary:

predicate fedge(FN:string,T:t_trace,SIN:lockstate,SOUT:lockstate).

?- fedge(F,A,SIN,SOUT).

3.3 Join Points

We turn now to the rules for the intraprocedural analysis—the analysis within a sin-
gle procedure. Like dataflow analyses, the Saturn locking analysis can be described
as a combination of transfer functions for each kind of statement (Section 3.4)
and how information at join points (places where multiple control paths merge) is
computed:

predicate smerge(P:pp,T:t_trace,S:lockstate,G:g_guard).

The predicate smerge has exactly the same signature as the state predicate: the
guard G under which a lock T has a certain lock state S at a program point P. In
fact, smerge is used to compute state at a program point. The invariant that the
analysis maintains is that while there may be many smerge facts for a program
point, one for each distinct control path reaching that program point, there will be
only one state fact per program point, representing the merge of all smerge facts.
The rule that uses smerge facts is

smerge(P,T,S,_), \/smerge(P,T,S,G):#or_all(G,MG), +state(P,T,S,MG).
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This rule introduces two more new features. The first is the collection over smerge(P,T,S,G).
Normally a find on a predicate succeeds once for every fact that matches it, sepa-
rately instantiating the remainder of the rule with the values of the variables in the
find. A collection succeeds exactly once for the set of all facts matching the predi-
cate. Collections are consumed by special collection predicates, which perform some
reduction on the set. In the rule above, the collection predicate #or all (provided
by the package biteval, Section 8.7) binds the merged guard MG to the disjunction
of all the guards G in the collection. We then add the single state fact that at point
P lock T is in lock state S if the single guard MG is satisfied.

Merging the guards in this way does not lose information, but allows the internal
representation for the merged guards to be simplified substantially, avoiding the
exponential blowup in the size of formulas and number of separate state facts that
could otherwise be encountered.

The first line of the rule serves two distinct and important roles:

• The initial find smerge(P,T,S, ) identifies any smerge fact and binds P, T,
and S to ground terms, but it does not bind G (the ‘ ’ is a wildcard matching any
value but introducing no bindings). Thus, the collection, which is evaluated
with P, T, and S bound to particular values, only has one unbound variable G
over which it ranges. This behavior is exactly what we want: for each separate
P, T, and S we want to compute the disjunction of all the possible guards G. The
initial find will succeed multiple times for different combinations of program
points, locks, and lock states, and one state fact will be computed for each.

• There is a problem with collections in a logic programming language. The
collection requires that all facts that match the collection be present when
the rule is evaluated—the collection can only be safely evaluated when there
is no possibility that another rule will later add another fact belonging to
the collection. The Calypso interpreter uses stratification (Section 4.11) to
determine statically an order of evaluation for the rules so that evaluation
of collections are evaluated at a point where it is known that no future fact
additions could invalidate the collection. In this example, the Calypso strati-
fication algorithm is able to determine an order of evaluation of the rules that
guarantees the collection will not be invalidated.

3.4 Statements

At the start of a function body we initialize the lock memory locations to some
initial state. Functions are analyzed separately and in a bottom up call graph
order, so when a function is analyzed we do not know what states the locks may be
in at call sites of the function. Thus, we analyze the function under the assumption
that the lock may be either locked or unlocked. However, we also know that the
lock cannot be both locked and unlocked simultaneously. We use entry locked,
defined below, to capture this last restriction:

predicate entry_locked(in T:t_trace,LKG:g_guard,UKG:g_guard).
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?entry_locked(T,_,_), #id_g(br_abit{ar_extra{t_locked{T}}},LKG),
#not(LKG,UKG), +entry_locked(T,LKG,UKG).

entry(PIN), icall(P0,_,I), cedge(I,CT,_,_),
inst_trace(s_call{I},P0,CT,trace{T},_), entry_locked(T,LKG,UKG),
+state(PIN,T,locked,LKG), +state(PIN,T,unlocked,UKG).

The predicate entry locked records a trace (lock) T and the initial conditions on
entry to the function under which T is locked LKG and unlocked UKG. Consider now
the first rule. Ignoring for the moment the predicate begining with ?, the second
predicate creates a new unconstrained boolean variable using #id g and binds it
to LKG. The #not(LKG,UKG) negates LKG and binds the result to UKG. (Both #id g
and #not are defined in the package biteval, Section 8.7) So, if LKG is the boolean
variable β, then UKG is ¬β, and the rule adds the fact entry locked(T, β,¬beta)
and we see that the initial state of the lock is either locked or unlocked, but not
both. The br abit{ar extra{t locked{T}}} identifier used in #id g is a unique
identifier for the new unconstrained variable; it ensures we associate each different
lock trace T with a different boolean variable.

The first predicate of the rule above is our first example of a wait predicate.
This wait only succeeds for traces T where some other rule tries to evaluate a find
entry locked(T,...). Waits are used to express demand-driven computations in
what is otherwise an eager evaluation model. Without waits, a rule is evaluated
exhaustively for all combinations of values that succeed. In logic programming
terminology, Calypso uses a bottom up evaluation strategy. Without the wait in the
rule above, then, an entry locked fact would be added for every memory location
being modeled, not just the locations that hold locks. The wait ensures that the
rule applies only to locations that some part of the analysis is interested in—i.e., the
locks. Thus, waits express a demand-driven or top down evaluation strategy which
can be freely mixed with the base bottom up strategy (the Prolog-style notation
‘head :- body’ for rules is also supported, and converted internally into waits).

The second rule infers the locations of locks accessed by the current function, and
adds their initial state at the CFG entry point. Since locks are only manipulated by
primitive functions or by other functions that themselves call the locking primitives,
we discover that a lock location is accessed by finding the called function which has
a lock state transition in its summary for that location. Writing the rule above for
this idea requires three new predicates:

• The predicate entry(P) identifies the unique program point P that is the
entry point of the current function body (Section 5.2.1).

• The predicate icall(P0,P1,I) identifies each function call I of any form
(direct or indirect) where P0 and P1 are the program points before and after
the call, respectively (Section 5.2.1).

• The predicate inst trace, which stands for instruction trace is central to
interprocedural analysis (Section 5.3.6). Recall that call edges (cedge facts)
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record the location (trace) of a lock in the scope of the callee (i.e. if cedge
holds for drf{root{arg{0}}} then it is the first argument to the call, not the
current function). We need the corresponding location (trace) in the caller,
and inst trace provides this mapping: the first and second arguments iden-
tify the call site (the call instruction and program point), the third argument
is the trace in the callee, and the fourth argument is the corresponding trace
in the caller. The fifth argument is a guard under which the mapping holds,
which for this rule is not used because we just need the locks that could be
accessed within the current function.

We can now explain in detail how the rule discovers which locks are accessed by
the current function. Consider a function call at a program point P0 (the find on
icall) that has a call edge on location CT (the find on cedge), which means that CT
has a lock state transition and is therefore a lock. Now, if CT corresponds to caller
location T (the find on inst trace), then we look up the initial conditions LKG and
UKG under which T is locked and unlocked respectively (the find on entry locked,
which triggers the wait in the previous rule) and add appropriate state facts for
the entry program point of the function.

Now that the lock states at the function entry point have been set up, they must
be propagated forward through the CFG to find out their new states at exit. The
locking analysis models three kinds of CFG transitions: assignments, conditional
branches, and function calls.

The rule for assignment statements iset is:

iset(P0,P1,_), state(P0,T,S,G), eguard(P0,P1,G,EG), +smerge(P1,T,S,EG).

Analogous to icall, the iset predicate has three arguments: the program point
before the assignment P0, the program point after the assignment P1, and the as-
signment instruction itself. Assignments statements cannot affect the states of locks,
so we do not care what the assignment actually is. We are not even concerned with
whether pointers to locks are created and copied by assignmens, because all of that
is covered by the underlying memory model. Recall that traces represent memory
locations that hold locks, not program variables; the memory model infers what
variables refer to which locations. The locking analysis never needs to explicitly
refer to that information, it simply keeps track of the memory locations that are
locks.

Returning the assignment rule, it is read as follows. Consider an assignment
between program points P0 and P1. If the state of lock T is S at point P0 under
guard G, then the state of T at P1 will also be S but with a possibly different guard
EG (the add of smerge). The guard EG is computed using the eguard predicate
(Section 5.3.5), which combines the guard G tracked by the locking analysis with
whatever guard the underlying memory model has inferred controls the transfer of
control from P0 to P1.

The next two rules deal with conditional branches:

branch(P,P0,_,_), state(P,T,S,G), eguard(P,P0,G,EG0), +smerge(P0,T,S,EG0).
branch(P,_,P1,_), state(P,T,S,G), eguard(P,P1,G,EG1), +smerge(P1,T,S,EG1).
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These rules are similar to the iset rule, except that a branch has two possible
successors (P0 and P1 above).

The remaining statement form is function calls. Since function calls are the only
statements that actually affect lock states, there are two different cases to handle,
depending on whether there is a transition for the lock. Any call which does not
have a transition on a lock does not affect its state. First we consider the case where
a lock has an explicit transition:

icall(P0,P1,I), cedge(I,CT,SIN,SOUT),
inst_trace(s_call{I},P0,CT,trace{T},BG),
state(P0,T,SIN,SG), #and(BG,SG,G),
eguard(P0,P1,G,EG), +smerge(P1,T,SOUT,EG).

Consider a a call I between program points P0 and P1. If there is a call edge cedge
for this call where callee trace CT makes a lock state transition from SIN to SOUT,
and the corresponding caller trace is T if guard BG is true and lock T is in state
SIN if guard SG holds before the call, then after the call T is in state SOUT if the
conjunction of BG and SG is true.

The second case is where there is no transition on the lock. We must be careful
because the same lock may be accessed in multiple ways and under different condi-
tions, so we need to compute the condition under which the lock is not accessed by
any callee transition.

predicate edge_negate(P:pp,T:t_trace,NG:g_guard).
icall(P,_,I), cedge(I,CT,_,_),

inst_trace(s_call{I},P,CT,trace{T},G),
#not(G,NG), +edge_negate(P,T,NG).

The edge negate predicate records the complement of the condition under which
trace T is affected by a lock state transition at a call site.

icall(P0,P1,_), state(P0,T,S,SG),
\/edge_negate(P0,T,NG):#and_all(NG,MNG), #and(MNG,SG,G),
eguard(P0,P1,G,EG), +smerge(P1,T,S,EG).

Consider a lock T in at the program point P0 before a function call. We can get the
condition MNG under which T is not affected by any transition on the call using a
collection. This is then conjoined with the condition SG under which T was in state
S before the call to get a state where T is still in state S after the call. Note that
the above rule handles the situation where a lock is completely unaffected by a call
(i.e., there are no transitions on the lock at all), in which case the conjunction of
the negation of all the transition guards is simply true.

The following rule specifies that any lock in the error state is still in the error
state after a function call:

icall(P0,P1,_), state(P0,T,error,G),
eguard(P0,P1,G,EG), +smerge(P1,T,error,EG).



3.5. EXAMPLES 23

Recall that trace trans is used to capture the net effect of an entire function
body on a lock. The final rule generates these trace trans facts:

exit(P), state(P,T,S,SG), entry_locked(T,LKG,UKG),
#and(SG,LKG,LKGG), +trace_trans(T,LKGG,locked,S),
#and(SG,UKG,UKGG), +trace_trans(T,UKGG,unlocked,S).

This rule first finds a lock T in state S under condition SG at the exit point P of the
function body. If the condition under which T was locked on entry to the function
body is LKG, then under the conjunction of conditions SG and LKG the function
body maps T from state locked to state S. The case where T is unlocked on entry
is similar.

3.5 Examples

Change into the directory analysis/locking/base04 and examine the file run.clp:

rm *.dot *.db 2> /dev/null
cilcc test.c
clpa --quiet ../simplelocking.clp $*

The first line cleans out any .dot and .db files from previous runs. If a Calypso
program gives unexpected results, one of the first things to check is whether it is
reading from stale databases. Issuing the command ./run while in this directory
runs the simple locking analysis on the file test.c. We explain the output in
conjunction with the functions in test.c. The function foo is

void foo(spinlock *a)
{
lock(a);
unlock(a);

}

and the inferred fedges for foo in the output are

fedge("foo",drf{root{arg{0}}},locked,error).
fedge("foo",drf{root{arg{0}}},unlocked,unlocked).

Thus, the analysis correctly infers that foo locks its argument if it is initially un-
locked and has a double locking error if the argument is initially locked. The
function bar is

void bar(spinlock *a, int b)
{
if (b)
lock(a);

if (b)
unlock(a);

}
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and the analysis results for bar are

fedge("bar",drf{root{arg{0}}},locked,error).
fedge("bar",drf{root{arg{0}}},locked,locked).
fedge("bar",drf{root{arg{0}}},unlocked,unlocked).

Here we can see the path-sensitivity of the analysis, which has discovered that
an unlocked lock is always left in the same state by a call to bar. Recall that
in writing the analysis we were not concerned with path sensitivity at all. The
necessary analysis and correlation of the branch conditions has been performed by
the imported memory analysis. A locked lock can either cause a double locking
error (if b is true) or be left in the same state by bar (if b is false). The code for
sip is

int sip(spinlock *a) {
if (g) {
lock(a);
return 1;

} else {
return 0;

}
}

and the results of the analysis are

fedge("sip",drf{root{arg{0}}},unlocked,locked).
fedge("sip",drf{root{arg{0}}},locked,locked).
fedge("sip",drf{root{arg{0}}},unlocked,unlocked).
fedge("sip",drf{root{arg{0}}},locked,error).

In this example we can see that the analysis has also done as well as it can; with-
out further information, all and only the possible state transitions of the code are
summarized by the fedges. The function sip is used by sap:

void sap(spinlock *a)
{
int i;
i = sip(a);
if (i) {
unlock(a);

}
}

for which the simple locking analysis gives the following results:

fedge("sap",drf{root{arg{0}}},unlocked,locked).
fedge("sap",drf{root{arg{0}}},locked,locked).
fedge("sap",drf{root{arg{0}}},unlocked,unlocked).
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fedge("sap",drf{root{arg{0}}},locked,unlocked).
fedge("sap",drf{root{arg{0}}},locked,error).
fedge("sap",drf{root{arg{0}}},unlocked,error).

Now we can see a shortcoming of the simple locking analysis, which is that in
practice it is common for return values to indicate the state of locks manipulated
by a function. For example, primitive trylock/tryunlock functions return a boolean
indicating whether or not the lock/unlock operation succeeded. Functions like sap
then conditionally apply locking operations based on this return value. Because
the simple locking analysis does not track the correlation between the lock state
and the return value, the analysis of sap yields no information at all: the lock can
transition from any possible input state to any possible output state. We discuss
extensions that do a better job with return values in Section 3.7. The final example
is the function wrong

void wrong(spinlock *a, int b)
{
while (b) {
lock(a);

}
}

which has a double locking error assuming that b can ever be true. The analysis
produces the following rather surprising results:

fedge("wrong",drf{root{arg{0}}},unlocked,unlocked).
fedge("wrong",drf{root{arg{0}}},locked,locked).

No error is reported, so this summary is clearly not conservative—the simple locking
analysis is unsound. The issue is that the analysis does not handle loops; there is
a separate instruction form for loops, and the analysis we have presented simply
ignores it. While this approach is useful for bug finding, it is not adequate for
any verification application. We discuss the preferred method of handling loops in
sound analyses in Section 3.6.

3.6 Handling Loops

From the point of view of program analysis handling loops is in most respects a
special case of analyzing recursive functions. Saturn provides a standardized form
of control-flow construction that literally converts loops into tail recursive functions,
making it possible to treat all recursion uniformly.

The file locking/simplelocking2.clp is a modified version of simplelocking.clp
that handles loops correctly. There is a test case for this modified version of the
simple locking analysis in analysis/locking/base07; we begin by examining the
run script in this directory:
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rm *.dot *.db 2> /dev/null
cilcc test.c
clpa --quiet ../../base/sumbody.clp
clpa --quiet ../simplelocking2.clp $*

The new third line runs the stand-alone analysis sumbody.clp, which encapsulates
each loop in its own control flow graph. This file gives an example of how Calypso
programs can use the databases other Calypso programs compute, rather than im-
porting the other programs directly in the same Calypso execution.

The databases produced by sumbody.clp present an interface that differs from
the base control-flow graphs. In particular, functions must be identified not just
by name, but also by the place in the function where the control-flow graph came
from in the initial code. The main differences between simplelocking2.clp and
simplelocking.clp are:

• The analyze directive at the beginning of the program is

analyze session_name("cil_sum_body").

This directive is needed in any program that is analyzing the function bodies
produced by sumbody.clp.

• In several places throughout the analysis, the type c instr is replaced by sum,
which is a union of all the types of instructions that can count as functions
(i.e., the function itself, function calls, loops, and assembly directives). The
name sum is meant to suggest that these are the instructions that require
function summaries. Because sum includes loops, this change generalizes rules
that previously worked only for function calls to also work for loops.

• The sum locking session predicate is changed to take two arguments, the
function name and a particular sum within the function.

• Matches on direct calls dircall and call instructions icall are replaced by
the predicate isum(P0,P1,I), which matches every instruction I of sum type,
and, if needed, isum target(I,F,S), which gives the function name F and
sum S of the target of the call I.

• Uses of the predicates entry and exit, which match the entry and exit
program points of a function body respectively, are replaced by a combi-
nation of cil cursum(S), which matches the current sum being analyzed, and
sum bound(S,PIN,POUT), which gives the entry and exit points PIN and POUT
of the sum, respectively.

• The predicate fedge is given a new sum argument, so that the output shows
both the function name and the part of the control flow graph (the main
function body or a loop) of the locking facts.
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In the directory analysis/locking/base07 execute ./run. The output of the
modified locking analysis differs only in the information for the function wrong.
Notice that output is generated both for the loop and the function several times
during the analysis—the implementation repeats the analyses as many times as
needed to reach a fixed point where no more facts are added to any of the session
predicates. The final fedge facts inferred for wrong are

fedge("wrong",s_func,drf{root{arg{0}}},unlocked,unlocked).
fedge("wrong",s_func,drf{root{arg{0}}},locked,locked).
fedge("wrong",s_func,drf{root{arg{0}}},unlocked,locked).
fedge("wrong",s_func,drf{root{arg{0}}},locked,error).
fedge("wrong",s_func,drf{root{arg{0}}},unlocked,error).

fedge("wrong",s_loop{"s#0"},drf{root{arg{0}}},locked,locked).
fedge("wrong",s_loop{"s#0"},drf{root{arg{0}}},unlocked,unlocked).
fedge("wrong",s_loop{"s#0"},drf{root{arg{0}}},unlocked,locked).
fedge("wrong",s_loop{"s#0"},drf{root{arg{0}}},locked,error).
fedge("wrong",s_loop{"s#0"},drf{root{arg{0}}},unlocked,error).

The second group of facts gives the facts for the loop, which say that an error
(specifically, a double locking error) is possible whether the lock is initially locked
or unlocked. It is also possible that the lock will be untouched, or that the lock will
be acquired (if the lock is not initially held and the loop executes exactly once).

3.7 Interprocedural Path Sensitivity

The memory analysis provides full path sensitivity within a single function body,
but accurate analysis sometimes requires tracking predicates across function calls as
well. In the case of analyzing locks, the most important interprocedural predicates
correlate a function’s return value with the state of locks on exit from the function.
The file analysis/locking.clp generalizes simplelocking.clp to incorporate re-
turn values. The fundamental change is to the definition of call edges:

predicate cedge(I:c_instr,T:t_trace,SIN:lockstate,SOUT:lockstate,NEZ:bool).

The new definition adds the boolean argument NEZ, for “not equal to zero”, indi-
cating the state transition both when the return value is non-zero (NEZ is true) and
when the return value is zero (NEZ is false). A void function that does not return
a value is by convention treated as if it always returns zero.

This change allows the analysis to model trylocks, which, as discussed above,
are functions with a return value indicating whether the lock/unlock operation was
successful. So, for example, the trylock function (which attempts to acquire a
trylock), is modeled as

dircall(I,"trylock"),
+cedge(I,drf{root{arg{0}}},locked,locked,false),
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+cedge(I,drf{root{arg{0}}},unlocked,unlocked,false),
+cedge(I,drf{root{arg{0}}},locked,error,true),
+cedge(I,drf{root{arg{0}}},unlocked,locked,true).

If the locking operation fails (return value is zero) the state of the trylock is un-
affected. If the operation succeeds (return value non-zero) trylock is acquired if it
was not previously held; otherwise, there is a double-locking error.

Other significant differences from the simple locking analysis are:

• The signature of sedge is also extended to include an NEZ argument.

• A few rules use negation, a Calypso feature we have not yet discussed. For
example, in the rule

call_merge(I,P0,P1,false,T,S,G), ~callret(I,_),
eguard(P0,P1,G,EG), +smerge(P1,T,S,EG).

the second goal matches all calls I that do not return a value. Just as with
collection predicates, we must take care that the negations are tested after no
further facts that might match the goal can be added. In general it may be
necessary to supply ordering declarations to help the system with the order of
evaluation of rules with negations (Section 4.11), but for this particular rule
Calypso’s stratification algorithm finds an ordering with the other rules in the
analysis without additional information.

• There is a new predicate

predicate return_nez(NEZ:bool,G:g_guard).

that tracks the guard under which the current function returns a zero or non-
zero value.

• Because the analysis requires knowledge of return values to compute the sum-
mary predicates, there are new rules that manipulate return values. The
following rule

cil_var_return(X), cil_make_lval(X,"rlv",LV), cil_make_offset(X,"roff",OFF),
+cil_lval_var(LV,X,OFF), +cil_off_none(OFF),
cil_make_exp(X,"rexp",E), +cil_exp_lval(E,LV), exit(P), evals(P,E,V),
#id_g(br_cmp{sc_eqz{V}},EQZG), +return_nez(false,EQZG),
#not(EQZG,NEZG), +return_nez(true,NEZG).

is perhaps the most involved rule in the locking analysis. The first part of the
rule gets the return variable for the function, which is always in a variable
cil var return(X) that the front-end parser guarantees exists for functions
that return values. The next several goals create an expression E from X that
can be dereferenced. The value of the return variable at the function exit
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point P is bound to V by the predicate evals(P,E,V) (the evals predicate
is computed by the memory analysis). The final goals create a fresh guard
capturing when V is zero or non-zero.

In the directory locking/base08 execute ./run. Note that the results for function
wrong have reverted to the unsound results of simplelocking.clp; the program
locking.clp does not include the modifications to analyze loops, which is suggested
as an exercise for the interested reader. The analysis of functions sip is, however,
much more refined than before:

fedge("sip",drf{root{arg{0}}},locked,locked,false).
fedge("sip",drf{root{arg{0}}},unlocked,unlocked,false).
fedge("sip",drf{root{arg{0}}},unlocked,locked,true).
fedge("sip",drf{root{arg{0}}},locked,error,true).

The first two facts say that if the return value is zero then the lock is unaffected by
the call to sip. If the return value is true then either the lock is acquired or there
is a double-locking error (i.e., if sip attempts to acquire an already held lock). The
knowledge of the relationship between sip’s return values and its locking behavior
greatly improves the analysis of sap:

fedge("sap",drf{root{arg{0}}},locked,error,false).
fedge("sap",drf{root{arg{0}}},unlocked,unlocked,false).
fedge("sap",drf{root{arg{0}}},locked,locked,false).

The system now correctly infers that either the lock ends in the same state it started
in, or there is a double locking error if the lock is initially held and the call to sip
attempts to acquire it again.
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Chapter 4

Calypso Language Reference

4.1 Overview

This chapter describes the syntax and semantics of the Calypso logic programming
language used within Saturn for writing program analyses. The full logic program
grammar is shown in Figure 4.1. Each program consists of a series of rules, queries,
definitions, and directives, each terminated with a period. Each of these is described
in turn.

4.2 Facts

The fundamental unit of discourse in a logic program is the fact. Every fact is
an instance of some predicate paired with an application of some session function.
These encode, respectively, the fine-grained and coarse-grained aspects of the fact.
For example, to encode the fact that some variable X may point to Y at program
point P in the body of function F, we use the predicate pointsto(P,X,Y) and session
function body(F), representing the fact as body(F)->pointsto(P,X,Y).

Using session functions allows us to analyze each function in a program sep-
arately and yet allow for information dependencies between functions. Rules are
always evaluated in the context of a particular session (typically a function body),
referring to predicates pred in that session as simply pred, and predicates pred in
other sessions sess as sess−>pred. The name of the session being used for eval-
uation can be accessed by using the session name as a regular predicate (i.e. the
session body(F) always contains the fact body(F)).

pred ::= symbol ‘(’ val, ..., val ‘)’
sess ::= symbol ‘(’ val, ..., val ‘)’
spred ::= pred | sess ‘−>’ pred

Arguments to predicate instances pred and session function applications sess
may be the wildcard value ‘ ’, named variables, constant strings, integers, floats,

31
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program ::= ε | toplevel ‘.’ program
toplevel ::= rule | query | typedef | preddef | sessdef | analyze | using | import

pred ::= symbol ‘(’ val, ..., val ‘)’
sess ::= symbol ‘(’ val, ..., val ‘)’
spred ::= pred | sess ‘−>’ pred
val ::= ‘ ’ | var | string | int | float | listval | sumval

listval ::= ‘[’ val, ..., val ‘]’ | ‘[’ val, ..., val ‘|’ var ‘]’
sumval ::= symbol | symbol ‘{’ val, ..., val ‘}’

rule ::= goal | spred ‘:-’ goal
goal ::= ‘+’ spred | spred | ‘?’ pred | val ‘=’ val | val ‘\=’ val

| goal ‘,’ goal | goal ‘;’ goal | ‘(’ goal ‘)’ | ‘∼’ goal | ‘\/’ goal ‘:’ pred
query ::= ‘?-’ spred

type ::= symbol | symbol ‘[’ tval, ..., tval ‘]’
tval ::= [var ‘:’] var | [var ‘:’] type

typedef ::= ‘type’ type | ‘type’ type ‘=’ type | ‘type’ type ‘::=’ tsumval|...|tsumval
tsumval ::= symbol | symbol ‘{’ tval, ..., tval ‘}’

preddef ::= ‘predicate’ symbol ‘(’ mtval, ...,mtval ‘)’
mtval ::= tval | ‘in’ tval | ‘out’ tval

sessdef ::= ‘session’ symbol ‘(’ tval, ..., tval ‘)’ [‘containing’ ‘[’ symbol, ..., symbol ‘]’]

analyze ::= ‘analyze’pred
using ::= ‘using’ symbol

import ::= ‘import’ string

Terminals symbol are alphanumeric strings beginning with a lowercase letter,
var are alphanumeric strings beginning with a capital letter, string are double
quoted escaped strings, int are integer constants, and float are floating point
constants. Lists of values val, ..., val are comma separated, while sums of values
tsumval|...|tsumval are separated by ‘|’.

Figure 4.1: Logic program grammar
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lists, or user-defined composite sum-values. Lists may be expressed as either a fixed
length list of zero or more elements [E1,E2,...,En] or as a variable length list with
one or more head elements and a tail [E1,E2,...,En|TAIL]. For more information
on sum-values, see Section 4.5.

val ::= ‘ ’ | var | string | int | float | listval | sumval
listval ::= ‘[’ val, ..., val ‘]’ | ‘[’ val, ..., val ‘|’ var ‘]’
sumval ::= symbol | symbol ‘{’ val, ..., val ‘}’

4.3 Rules

Derivation rules infer and manipulate facts about the program of interest. When a
rule is executed, it queries various facts of interest, instantiating any free variables
it has, and may or may not add new facts in response. All rules in the program
execute independently from one another, and communicate via adding and querying
new facts. Any particular rule may be executed many times, once for each set of
predicates that match the queries it makes.

Two kinds of rules are supported. The first kind has the form Goal, where Goal
is a valid goal, as described in the next section. The last action performed by Goal
must be an add operation. The second kind of rule is a Prolog-style horn clause,
and has the form Head :- Body, where Head is a valid predicate term, and Body is
a valid goal. Whenever Body successfully executes, the fact given by Head will be
added.

rule ::= goal | spred ‘:-’ goal

Note that a horn-clause style rule Head :- Body is equivalent to the rule ?Head,
Body, +Head. Conversely, the first kind of rule can be written as a sequence of horn-
clause style rules, using one rule per add goal. As both styles of rule are logically
equivalent, the choice of which to use is merely a stylistic preference.

A goal is the unit of execution. Each goal represents an operation, and may
either succeed or fail. Whenever a goal succeeds, it binds zero or more variables
to particular ground values, which can be used to instantiate the remainder of the
rule. A goal may succeed in multiple different ways, binding the same variables to
different ground values. A goal has one of the following forms:

goal ::= ‘+’ spred | spred | ‘?’ pred | val ‘=’ val | val ‘\=’ val
| goal ‘,’ goal | goal ‘;’ goal | ‘(’ goal ‘)’ | ‘∼’ goal | ‘\/’ goal ‘:’ pred

4.3.1 Conjunction

A conjunction goal goal1, ..., goaln consists of two or more goals separated by the
conjunction operator ‘,’. Each subgoal goali is executed in turn, from left to right. If
goali succeeds, the remainder of the conjunction is instantiated using the variables
bound by goali (the remainder may thus be instantiated many different times if goali
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succeeds in multiple ways) and then executed. The entire conjunction succeeds if
and only if all subgoals succeed, and binds all variables bound by any of its subgoals.

Most rules can be written as a single conjunction goal, where each subgoal is
either an add or find (see below).

4.3.2 Disjunction

A disjunction goal goal1; ...; goaln consists of two or more goals separated by the
disjunction operator ‘;’. Each subgoal goali is executed independently from one
another. The entire disjunction succeeds if and only if any subgoal succeeds, and
binds the variables bound by the subgoal that succeeded.

Nested conjunctions and disjunctions can be grouped using parentheses if neces-
sary. Note that conjunction goals bind more tightly than disjunction goals, so that
G0, G1; G2, G3 is equivalent to (G0, G1); (G2, G3).

4.3.3 Add

The add goal +spred indicates that spred should be added to the set of known
facts. An add goal always succeeds, and binds no variables. Rules consisting only
of add goals encode axioms in the program.

Example 4.1. Consider the problem of encoding the finite state machine for a spin
lock. We use a single predicate trans(S0,SLK,SUK,S1). S0 is the state of the lock
before the transition, and S1 is the state after. SLK and SUK indicate what S1 is if
S0 is locked or unlocked, respectively. If S0 is in the error state, S1 will also be in
the error state.

We encode this definition of trans using add rules, making one rule each for
whether S0 is locked, unlocked, or in the error state:

+trans("locked",SLK,_,SLK).
+trans("unlocked",_,SUK,SUK).
+trans("error",_,_,"error").

We could also have placed all three add operations in the same rule using a
conjunction goal.

4.3.4 Find

A find goal spred succeeds if any (present or future) known fact matches spred,
binding all free variables in spred to the corresponding values in any such fact.

Example 4.2. Continuing the example with trans, now we want rules for evalu-
ating the ‘lock’ and ‘unlock’ functions on values passed into them. We use two new
predicates: state(P,X,S) indicates that at program point P, lock X is in state S.
call(P0,P1,F,X) indicates that there is a call to F with argument X, where P0 and
P1 are the program points directly before and after the call, respectively.

We encode the operation of ‘lock’ and ‘unlock’ as follows:
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call(P0,P1,"lock",X), state(P0,X,S0),
trans(S0,"error","locked",S1), +state(P1,X,S1).

call(P0,P1,"unlock",X), state(P0,X,S0),}
trans(S0,"unlocked","error",S1), +state(P1,X,S1).

4.3.5 Wait

The wait goal ?pred succeeds whenever a find operation is performed by another
rule in the program on a predicate matching pred, binding any free variables in
pred to the corresponding values in the find operation.

Example 4.3. Consider the problem of evaluating dereference expressions under
a flow-sensitive points-to analysis; particular dereferences may have many different
targets depending on the point that they are evaluated at. We use three pred-
icates: pointsto(P,X,Y) indicates that at program point P, X may point to Y.
exp deref(E,ED) indicates that E is the dereference expression of ED (i.e. E = ∗ED).
eval(P,E,X) indicates that at program point P, E may evaluate to X.

We can encode the dereference operation as follows:

exp deref(E,ED), eval(P,ED,X), pointsto(P,X,Y), +eval(P,E,Y).

However, this rule will be exhaustively applied, evaluating the targets of E at
every point in the function. We are generally interested in the value of E at only
a few program points of interest and can delay evaluation of the rule to only these
points using the wait operation as follows:

exp deref(E,ED), ?eval(P,E, ),
eval(P,ED,X), pointsto(P,X,Y), +eval(P,E,Y).

In effect, the wait operation is an explicit name for the magic version of a
predicate produced by the magic sets transformation, which is a means of obtaining
demand-driven evaluation in the otherwise bottom-up evaluation. The magic sets
transformation is applied only to those predicates with an associated wait operation.

4.3.6 Equality/Disequality

The equality goal v0 = v1 succeeds if and only if v0 and v1 are unifiable, binding
any free variables in v0 or v1. The disequality goal v0 \= v1 succeeds if and only if
v0 and v1 are not unifiable, and does not bind any variables. In both cases either
v0 or v1 must be ground.

4.3.7 Negation

The negation ∼goal succeeds if and only if goal fails, and binds no variables.

Example 4.4. In the following program, the print operation will not be executed
because the fact item(1) will be derived from the second rule.
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~item(1), +print(1).
+item(1).

However in the following program if item(1) does not initially hold, it will be
added and invalidate the negation. Cycles like this are detected and reported during
parsing by the rule stratification algorithm (see Section 4.11).

~item(1), +item(1).

4.3.8 Collection

The collection goal \/goal : pred quantifies over all variable bindings produced by
goal when it succeeds, using a special collection predicate pred. A collection goal is
similar to a find goal, except that rather than succeeding many times, once for each
matching fact, the goal succeeds just once, binding some variable(s) to the result
of the collection. Several collection predicates are available, with each specifying a
different way to combine the set of facts and instantiate the remainder of the rule.

Example 4.5. In the following program, the print operation is executed three
times, once for each item. The result is 1, 2, and 3 on separate lines.

+item(1), +item(2), +item(3).
item(X), +print(X).

In contrast, in the following program, the print operation is executed once for the
list of items. The result is a single line with the list [1,2,3].

+item(1), +item(2), +item(3).
\/item(X):list all(X,LIST), +print(LIST).

4.4 Queries

Queries supply a predicate, printing to the output all known matching facts.

query ::= ‘?-’ spred

4.5 Type Definitions

All predicates and sessions in the language are well-typed, and all program rules
are statically type-checked during parsing. Each language type is a symbol, which
may take any number of typed arguments. The arguments may be type variables
(in the case of polymorphic types) or concrete types, prefixed by an optional name
(this name is unused by the checker and is provided to aid documentation). Types
for builtin constants are string, int, and float. Lists have polymorphic type
list[T], which may be instantiated with any type T.

type ::= symbol | symbol ‘[’ tval, ..., tval ‘]’
tval ::= [var ‘:’] var | [var ‘:’] type
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Programs are free to define their own types using the ‘type’ keyword at the
program’s top level. Type definitions can be simple forward declarations (which
must be filled in later), aliases for other types, or sets of possible composite sum-
values, using a BNF-style notation. Once a type is defined as a set of sum-values,
those sum-values (and any arguments) may be used in rules as predicate arguments
or components of other sum-values.

typedef ::= ‘type’ type | ‘type’ type ‘=’ type | ‘type’ type ‘::=’ tsumval|...|tsumval
tsumval ::= symbol | symbol ‘{’ tval, ..., tval ‘}’

4.6 Predicate Definitions

Any predicate used in a program must be defined before it can be used. Predicate
definitions supply types and modes for each argument, which are used during parsing
to check the rules for errors but do not affect the runtime behavior of the rules.
Modes are used exclusively in predicate definitions, and are either ‘in’ or ‘out’, with
a default value of ‘out’ if omitted. When doing a find, negate, or collect operation
on the predicate, ‘in’ arguments must be ground (can’t contain any wildcards or
variables) and ‘out’ arguments may be anything. When doing an add operation on
the predicate, ‘out’ arguments must be ground and ‘in’ parameters may be anything.

preddef ::= ‘predicate’ symbol ‘(’ mtval, ...,mtval ‘)’
mtval ::= tval | ‘in’ tval | ‘out’ tval

4.7 Session Definitions

Any session function used in a program must be defined before it can be used,
supplying the argument types. Optionally the definition can also specify the set of
predicate names which may be contained within the session, which will be checked
whenever an add or find goal is performed on the session.

sessdef ::= ‘session’ symbol ‘(’ tval, ..., tval ‘)’ [‘containing’ ‘[’ symbol, ..., symbol ‘]’]

Whenever a session is used explicitly in an add or find goal, all the session
arguments must be ground. Note that when predicates are added to a session during
analysis, the effect of that add is only visible after the analysis of the current session
terminates—operationally, new facts are only committed to the databases once the
session completes. If the current session performs both add and find operations on
the same summary session, then it has created a circular dependency and it will be
continually reanalyzed by the interpreter until the summary session stops changing
(i.e. a fixpoint has been reached).

Additionally, any facts that are added to the current session without using the
session name are not committed to the databases. Thus, the new facts that are
needed by other sessions must be added using the +S->P form.

Several special built-in predicates may be used in add goals to manipulate ses-
sions at a broader level than basic adds and finds. These are listed below.
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• clear old preds()

Add clear old preds() in combination with another session to remove all of the
predicates previously existing in that session. Normally, predicates added into a
session are merged with the predicates previously existing in that session once a
function body has finished being analyzed. By performing a clear old preds()
this behaviour is overridden, and only the newly added predicates will be present
in the session on completion.

• process dependency(SNAME:string,...)

When iterating over all the sessions in a program, the Saturn interpreter processes
sessions in a topological sort according to a process order graph. For example when
analyzing function bodies, a function is by default usually be analyzed before its
callers. The frontend generating the initial session databases fills in this initial de-
pendency information, however for sessions generated by scripts there is no default
ordering. Adding the predicate S0(ARGS0)->process dependency(S1,ARGS1) in-
dicates that that session S1(ARGS1) should be placed before S0(ARGS0). Note that
this is evaluation order is not guaranteed (in case there are cycles in the graph, for
example), and that the additional dependency does not take effect until the next
execution of the interpreter.

4.8 Analyze Directives

Analyze directives specify properties that control analysis at an interprocedural
level. Each directive takes the form of a predicate, and can be specified at most
once.

analyze ::= ‘analyze’ pred

The possible analyze directives are as follows:

• session name(SNAME:string)

The session to iterate over, with SNAME given by an earlier ‘session’ definition. All
known sessions mapped by the named session function are processed during inter-
procedural analysis.

• analysis name(ANAME:string)

The name of this analysis, printed out with each processed session.

• topdown()

When analyzing sessions representing function bodies, order interprocedural anal-
ysis to process them in a top down order.
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• bottomup()

When analyzing sessions representing function bodies, order interprocedural analy-
sis to process them in a bottom up order. This is the default if neither topdown()
nor bottomup() is specified.

• eager()

Always use the interprocedural analysis order (topdown or bottomup) to order
sessions in this analysis. This overrides the default behavior, which is to use the
interprocedural analysis order only if two sessions have already been analyzed the
same number of times, and to prefer sessions that have been reanalyzed fewer times
otherwise.

• priority(PRI:int)

When cofixpointing between multiple analyses, set the relative priority of this anal-
ysis. This analysis is always run before other analyses that have a higher value for
PRI.

4.9 Using Directives

Built-in constraint solvers and other packages define their own set of predicates,
which can be used by the rules after a ‘using’ directive is added for the package
name. The list of available packages is provided in Section 8.

using ::= ‘using’ symbol

4.10 Import Directives

Import directives add the rules and directives in another logic program to the current
one. The other program’s file name is supplied, which may be absolute or relative
to the directory containing the current program.

import ::= ‘import’ string

4.11 Stratification

The Saturn interpreter uses stratification for ordering the evaluation of rules in
a Calypso program. Stratification looks at the dependencies introduced between
different rules by the adds, finds, and other operations performed, and uses these
dependencies to prioritize which parts of which rules are executed first whenever
the interpreter has the choice of executing multiple rules.
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Stratification is only necessary in the presence of negation and collection goals.
If a program does not contain any negations or collections, the result is always the
same regardless of rule execution order.

Example 4.6. Consider the following program:

1. foo(), +bar(1).
2. foo(), +bar(2).
3. +foo().

If no facts are known, then the initial find operations performed by rules 1 and 2
will initially fail, so only rule 3 can be executed. This will add fact foo(), so that
both rules 1 and 2 may now be executed. If rule 1 is evaluated first, bar(1) will be
added followed by bar(2). If rule 2 is evaluated first, bar(2) will be added followed
by bar(1). In both cases however, the final set of facts is the same, and unaffected
by the ordering used.

Now, consider the use of a negation or collection goal. Whenever a negation
is executed by the interpreter, the currently known set of facts is inspected, and
if the subgoal cannot currently succeed, the negation goal succeeds. If a fact is
subsequently added that causes the subgoal to succeed (and the negation to fail),
the negation will have been invalidated and the interpreter result may be incorrect.
Similarly, whenever a collection is executed, all currently known ways for the subgoal
to succeed will be examined and used to generate the collection’s output variable
bindings. If an additional way is subsequently found for the subgoal to succeed, the
collection will have been invalidated.

Stratification solves this problem by finding an ordering for the program’s rules
that avoids invalidation of any negation or collection goals. Conceptually, we
find all rules that could lead to facts being added which affect a particular nega-
tion/collection, and make sure those rules are always evaluated before the nega-
tion/collection.

Example 4.7. Consider the following program:

1. foo(), +bar().
2. +foo().

If no facts are known, then if the interpreter initially attempts to execute rule 1,
the negation will succeed and bar() will be added. When rule 2 is subsequently
executed, the added foo() will invalidate the earlier negation. The stratification
algorithm will recognize that rule 1 depends on predicate foo, and rule 2 may
generate foo, so rule 2 should be executed first. In this case then, foo() is added,
the negation in rule 1 fails, and bar() is not added, the correct result.

The Calypso interpreter uses a two-pass algorithm to order the predicates of an
analysis.

The first pass attempts to construct a total ordering of the predicates of the
logic program based on their names alone, ignoring any arguments. Hence predi-
cates foo(3) and foo(4) will be considered as a single predicate foo for the first
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stratification pass. The interpreter constructs a dependency graph between each
predicate added by a rule and the predicates that those rules query, and topologi-
cally sorts it to obtain a list of strongly connected components of predicates which
forms the basis of the stratification order.

What if two negations/collections in different rules depend on each other? In
this case the stratification algorithm will find that there is a strongly connected com-
ponent in the predicate dependency graph containing a negation/collection edge.
The stratifier will therefore fail to construct a stratification order.

Example 4.8. Consider the following program:

1. ∼bar(), +foo().
2. ∼foo(), +bar().

Either rule 1 or rule 2 may be executed first. If rule 1 is executed first, foo()
will be added and rule 2 will fail. If rule 2 is executed first, bar() will be added
and rule 1 will fail. In other words there are two possible consistent models for
this logic program, and if we permitted this situation then the interpreter might
non-deterministically produce either. Instead, this situation is statically detected
by the stratification algorithm, which will report an error.

Stratification based on predicate names alone is frequently too coarse for many
applications. Consider the following logic program, which is modeled after analyses
that iterate over an acyclic graph:

predicate edge(M:int, N:int).
predicate afact(int).
edge(1,2) :- .
edge(2,3) :- .
afact(B) :- edge(A, B), ∼afact(A)

The first pass of the stratification algorithm cannot distinguish between afact(B)
and afact(A) in the last rule, and hence in the absence of further information the
interpreter will conclude that the afact predicate depends on itself through a nega-
tion and will report an error. However, in this particular case, because the the
facts of the edge predicate encode an acyclic graph, this cyclic dependency will not
actually arise during execution of the logic program. The stratification algorithm
has a second refinement pass to enable us to model situations such as this one.

The interpreter dynamically maintains a partial order ≺ on the values of each
type. Predicate declarations can be annotated to indicate that their arguments are
ordered under this partial order. The stratification algorithm can use the ordering
annotations in order to obtain a stratification. The dynamically computed ordering
information will then be used to schedule rule executions as required by the stratifier.

For example, since the edge facts form an acyclic graph, there exists a partial
order on the nodes of the graph, such that argument M to edge is ordered before
argument N. To indicate this to the interpreter, we add the following annotation to
the declaration of edge:
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predicate edge(M:int, N:int) order [M, N].

Initially the interpreter knows nothing about the ordering of the values in each
type. When a instance of a predicate with an ordering annotation is added, then
the interpreter also remembers that the corresponding values have the ordering
described by their ordering annotation. For example, in the example above, the
interpreter will add partial ordering edges 1 ≺ 2 and 2 ≺ 3. Since the ordering ≺
is maintained dynamically, the interpreter does not attempt to prove ahead of time
that partial orderings given by ordering annotations are actually correct. Instead,
we compute the partial order in an online fashion, aborting the analysis if an cycle
is detected in the ordering edges.

The stratification algorithm can use the ordering annotations to produce order-
ings for programs that cannot be stratified on a per-predicate basis. For each cycle
involving a negation/collection edge in a strongly-connected component of the de-
pendency graph, the stratifier attempts to prove that the two predicate instances can
be ordered using ≺. In the example above, the stratifier uses the ordering annota-
tion on foo to conclude that A ≺ B in the last rule, and hence afact(A) ≺ afact(B).

Note that there is only one partial ordering for each type. If more orderings are
desired, wrapper types can be used.



Chapter 5

Saturn Calypso Analysis
Implementations

5.1 Overview

This chapter describes the Calypso analyses and analysis infrastructure included
with Saturn. The analysis infrastructure includes general purpose Calypso files that
are not stand-alone analyses, but are imported and used by most Saturn stand-alone
analyses:

• Section 5.2 describes the CFG construction infrastructure components, includ-
ing various ways of generating CFGs as well as marking per-function points
of summarization (loops, calls, etc.)

• Section 5.3 describes the memory model used by analyses. This includes the
naming method for abstract locations and values, the path-sensitive intra-
procedural model of points-to and value aliasing information, and the inter-
procedural propagation of information about abstract locations.

The remaining sections document the following stand-alone analyses:

• Section 5.4 describes the alias analysis and how it interacts with the memory
model.

• Section 5.5 describes the NULL pointer dereference analysis.

5.2 CFG and Summary Construction

To perform a flow- or path-sensitive analysis on a function, we first need a con-
trol flow graph describing the various instructions that may be executed and the
jumps and conditional branches between them. The source CIL syntax databases
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generated do not contain any control flow information beyond the location of if state-
ments, while statements, etc. The Calypso files ‘base/cilcfg.clp’ and ‘base/loops.clp’
are responsible for generating full control flow graphs for the function and its loops
based on these syntax predicates.

Each CFG is a graph whose nodes are program points and whose edges are pro-
gram actions (Section 5.2.1). Loops in the function are usually handled by splitting
them off from the rest of the function’s body, generating a smaller CFG with a
tail-recursive invocation of the loop itself (Section 5.2.2). This ensures that each
function/loop CFG is an acyclic graph, a crucial property needed by the memory
model described in Section 5.3.

Within a function the loops, calls, and outer function itself are all natural points
for generating summary information. The common treatment of these summaries
is described in Section 5.2.3.

Any analysis generating CFGs can import the Calypso file ‘base/cfgdot.clp’,
which generates, for each function ‘foo’, a DOT graph file ‘foo cfg.dot’ which shows
the various nodes and edges in the CFGs of ‘foo,’ and can be viewed using dotty
or any other DOT viewer.

5.2.1 CFG program points and actions

Individual program points in the CFG have type pp. These indicate distinct points
in the possible execution paths for a function. Type pp can be considered abstract
(though it is defined in ‘base/cilcfg.clp’), however there are a few important predi-
cates for reasoning with points:

• entry(P:pp): P is the unique entry point of the current function.

• exit(P:pp): P is the unique exit point of the current function.

• point location(P:pp,FILE:string,LINE:int): P corresponds to a location
on line LINE of source file FILE. Note that there may be multiple points on
any given line.

Different program points are connected to one another by edges representing the
different program actions which may be taken. The different edges are as follows:

• iset(P0:pp,P1:pp,I:c instr): Points P0 and P1 are connected by a CIL
set instruction I, such that cil instr set(I,LV,E) for some LV/E.

• iasm(P0:pp,P1:pp,I:c instr): Points P0 and P1 are connected by a CIL
set instruction I, such that cil instr asm(I,TARGETS) for some TARGETS. By
default assembly is ignored when generating the CFG. To enable construction
of iasm edges, add the predicate cfg translate asm().

• icall(P0:pp,P1:pp,I:c instr): Points P0 and P1 are connected by a CIL
call instruction I, such that cil instr call(I,FNE) for some FNE. Call in-
struction targets can be found with the dircall(I:c instr,FN:string) pred-
icate identifying direct calls only, or the anycall(I:c instr,FN:string,T:calltype)
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predicate identifying both direct and indirect calls depending on T. Com-
puting possible targets of indirect calls requires the alias analysis to be run,
see Section 5.4.4.

• iloop(P0:pp,P1:pp,L:loop): Points P0 and P1 are connected by an inner
loop L within this function. Generation of iloop edges is discussed in Sec-
tion 5.2.2.

• branch(P:pp,P0:pp,P1:pp,E:c exp): Program execution will branch from
P to P0 if expression E holds at P, or to P1 if E does not hold.

Example 5.1. Consider the following C program:

void bar();
void foo(int *x, int b, int c)
{

if (b) *x = 0;
if (c) *x = 1;
else bar();

}

Execute the following Calypso program:

import "base/loops.clp".
import "base/cfgdot.clp".
analyze session_name("cil_body").

This yields the file ‘foo cfg.dot’, which can be viewed with dotty and is shown in
Figure 5.1. Each circle is a program point, with edges between them the different
CFG edges; for each branch(P,P0,P1,E), there is an ebtrue connecting P with
P0, and an ebfalse connecting P with P1. The entry and exit points are labelled
with boxes. Note that strings such as "#5" are the unique identifiers used for
different CIL expressions, instructions etc. These can be converted to a non-unique
human-readable representation using the exp string etc. predicates defined in
‘base/cilbase.clp’.

5.2.2 Handling loops

Directly translating the source function’s syntax into a CFG will generate a loop
wherever the source function contains a loop, either an explicit while or for loop,
or an implicit loop created by goto back edges. Many analyses expect a loop-free
CFG though in order to terminate, so there are several ways to treat the source
function’s loops during CFG construction.

• Preserving back edges. Importing ‘base/loops.clp’ and adding the predicate
preserve loops() will preserve any source function loops in the final CFG.
This is incompatibe with the memory model as described in Section 5.3, but
can be useful for writing a CFG-based analysis from scratch.
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p_so{"s#0"}

p_bi{"#18"}

[ebtrue{"#15"}]

p_bi{"#27"}

[ebfalse{"#15"}]

nexit

p_so{"s#5"}

p_bi{"#5"}

[eset{"#6"}]

[eset{"#19"}]

nentry

p_bi{"#1"}

[ecall{"#28"}]

[ebfalse{"#2"}]

[ebtrue{"#2"}]

Figure 5.1: DOT graph for Example 5.1

• Breaking back edges. This is the default behavior resulting from just import-
ing ‘base/loops.clp’. Any back edges for loops which introduce cycles will
simply be omitted from the CFG, and there will not be any path in the CFG
from most points within the loop body to points in the function after the loop
executes.

• Splitting loops into tail recursive CFGs. Importing ‘base/loops.clp’ and adding
the predicate split loops() will split all loops apart, generating one CFG
for the outer function and one CFG for each inner loop. The flow of control
between these CFGs is encoded in iloop(P0,P1,L) edges, which indicate that
the named loop is to be executed. For each loop, iloop edges will be gener-
ated at two places: at the initial invocation of the loop by the function (or an
outer loop), and at the end of the loop’s own CFG where the back edge would
normally be, encoding a tail recursive invocation of the loop. For propagating
summary information between inner/outer loops and the function itself, see
Section 5.2.3.

Example 5.2. Consider the following C program:

int foo(int b, int c)
{

while (b) {
if (c) return 0;

}
return 1;
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p_so{"s#1"}

p_bi{"#2"}

[ebfalse{"#8"}]

p_bi{"#11"}

[ebtrue{"#8"}]

p_so{"s#5"}

nlooph{"s#0"}

[ebtrue{"#3"}]

p_so{"s#0"}

[ebfalse{"#3"}]

[eset{c_instr{"s#4","retset"}}] nexit

nentry

[eset{c_instr{"s#5","retset"}}]

Figure 5.2: DOT graph for Example 5.2 preserving loops

}

Figure 5.2 shows the CFG for this function with back edges preserved, i.e. after
adding preserve loops(). Figure 5.3 shows the default CFG for this function with
back edges broken. Note that this graph is identical to that in Figure 5.2, except that
the back edge from p so{"s#1"} to p bi{"#2"} (the false branch of the if statement)
has been removed and replaced with an edge to the point p lnext{"s#1"}, which
is not connected to anything.

Figure 5.4 shows the CFG for this function where the loop body is split off.
Loop edges have been introduced and the loop head p bi{"#2"} is now in a CFG
separate from the main function.

Most analyses based on the memory model in Section 5.3 use loop splitting, as
this preserves the full source program semantics of the loops. The default behavior of
breaking back edges is useful though for quickly getting an analysis up and running
(and easy to convert to split loops later), and in some cases works in general as
well.

5.2.3 Summaries and CFGs

Summary-based program analyses usually want to attach summary information to
multiple points within a function. These include calls, inline assembly, inner loops,
as well as the function itself. The sum type describes these common summarization
points and can be used to fold together properties shared by all of them into single
predicates and small sets of rules, simplifying the analysis-writing process. The sum
type is defined as follows:

• s func: The current function.
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p_so{"s#1"}

p_bi{"#11"}
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p_lnext{"s#0"}
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p_so{"s#5"}

nlooph{"s#0"}

p_bi{"#2"}

[ebtrue{"#3"}]

p_so{"s#0"}

[ebfalse{"#3"}]

[eset{c_instr{"s#4","retset"}}]

nexit

nentry
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Figure 5.3: DOT graph for Example 5.2 breaking loop back edges

p_lsum{"s#0"}

p_so{"s#0"}

[eloop{"s#0"}]

p_bi{"#11"}

[eloop{"s#0"}]

p_so{"s#5"}
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Figure 5.4: DOT graph for Example 5.2 splitting loop into separate CFGs
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• s loop{L:loop}: A loop within the current function.

• s call{I:c instr}: A call instruction within the current function.

• s asm{I:c instr}: An inline assembly instruction within the current func-
tion.

Conceptually, every sum value is defined in one place and invoked in another.
The client program analysis attaches a summary to each sum to bridge this gap, gen-
erating the summary at the definition, and applying the summary at the invocation
(or vice versa). Several predicates can be used to help this process along:

• sum body(SUM:sum,P:pp): For s func and s loop, identifies all points in the
CFG which defines the behavior of SUM.

• sum bound(SUM:sum,PIN:pp,POUT:pp): For s func and s loop, identifies the
entry/exit points of the CFG which defines the behavior of SUM.

• isum(P0:pp,P1:pp,SUM:sum): Folds icall, iloop, and iasm CFG edges into
a single predicate. Summary SUM is executed at P0, and when it finishes control
is transferred to P1.

• isum target(SUM,CFN,CSUM): Gets the definition point corresponding to an
s call or s loop summary. For calls this will be the s func sum within any
possible callee, and for loops this will just be the same loop within the current
function.

Example 5.3. Consider the problem of identifying which functions may transi-
tively call the exit function and prematurely terminate the program. We can com-
pute this by finding direct calls to exit, and pushing this information bottom-up
through direct and indirect calls and loop nestings, computing a summary session
sum may exit with the desired property.

import "base/loops.clp".
analyze session_name("cil_body").

+split_loops().

session sum_may_exit(FN:string) containing [smayx].
predicate smayx().

% SUM within the current FN may exit. SUM may be s_func, s_loop or s_call
predicate may_exit(SUM:sum).

% get direct calls to exit
dircall(I,"exit"), +may_exit(s_call{I}).

% propagate bottom up through inner loops and calls
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anycall(I,CFN,_), sum_may_exit(CFN)->smayx(), +may_exit(s_call{I}).
isum(P,_,CSUM), may_exit(CSUM), sum_body(SUM,P), +may_exit(SUM).

% update the current function’s summary
may_exit(s_func), cil_curfn(FN), +sum_may_exit(FN)->smayx().

An additional option for writing analyses built around the sum type is to perform
the analysis on the cil sum body session rather than the cil body session. Instead
of analyzing an entire function at a time which may contain additional CFGs for
each loop, a single sum is analyzed at a time, identified by the cil cursum(SUM:sum)
predicate (SUM may be either the outer function s func or some s loop).

To populate the cil sum body sessions, run the ‘base/sumbody.clp’ stand-alone
analysis.

Example 5.4. Consider again the problem of finding functions which may exit
prematurely. After running sumbody.clp we can run a slightly terser analysis which
computes this information at the granularity of individual functions/loops, not just
individual functions.

import "base/loops.clp".
analyze session_name("cil_sum_body").

session sum_may_exit(FN:string,SUM:sum) containing [smayx].
predicate smayx().

% the current SUM may exit
predicate may_exit().

% get direct calls to exit
dircall(I,"exit"), +may_exit().

% propagate bottom up through inner loops and calls
isum(_,_,SUM), isum_target(SUM,CFN,CSUM),

sum_may_exit(CFN,CSUM)->smayx(), +may_exit().

% update the current summary
may_exit(), cil_curfn(FN), cil_cursum(SUM), +sum_may_exit(FN,SUM)->smayx().

5.3 Memory Analysis

The Saturn memory model is used to construct a precise, path-sensitive model of
all the points-to and integer-value relationships at each point in the current func-
tion and its loops. Most Saturn analyses build on top of this model, querying
the state at different points to construct summary information and error reports.
The Calypso files ‘memory/traces.clp’, ‘memory/paths.clp’, ‘memory/memory.clp’,
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‘memory/scalar.clp’ and ‘memory/scalar sat.clp’ are collectively responsible for con-
structing the memory model. When writing an analysis, only ‘memory/scalar sat.clp’
needs to be included.

The core predicate representing the path-sensitive points-to graph for the func-
tion is val(P:pp,S:t trace,T:t trace val,G:g guard). This indicates that at
point P in the function, the memory location represented by S has the value T
(which may be the address of another memory location) when boolean condition G
holds. Memory locations t trace are described in Sections 5.3.1 and 5.3.2, location
values t trace val are described in Section 5.3.3, and boolean formulas g guard
are described in Section 5.3.4. These are then tied together in describing the path-
sensitive points-to graph (Section 5.3.5) and propagation of location information
between procedures (Sections 5.3.6 and 5.3.7).

The memory model can be used either with or without the alias analysis de-
scribed in Section 5.4. If the alias analysis is run, the potential aliases found will be
stored in summary databases and used automatically by the memory model when
constructing the function’s initial points-to graph and when applying pointer side
effects for function calls. If the alias analysis is not run, then the memory model
will assume non-aliasing between different pointers when constructing the initial
graph and applying side effects. Note that in both cases, the memory model will
precisely model the effects of any intra-procedural aliasing, i.e. that introduced by
assignments performed within the currently analyzed function (Section 5.3.5).

5.3.1 Memory location traces

Each concrete memory location that can be accessed by the current function is
represented within the memory model as a value of type t trace. Traces are repre-
sented as a series of zero or more memory operations (dereferences and field accesses)
performed on a root variable with a fixed stack or static allocation. Traces have
several important properties:

1. Any concrete location is represented by at most one trace. No two different
traces can represent the same concrete location and thus be aliased.

2. Every concrete location reachable via memory operations from the root vari-
ables is represented by a trace. Unreachable data has no representation; this
includes, for example, data local to any callers which did not escape to the
callee.

3. Traces may represent more than one concrete memory location. These are
termed soft traces; see Section 5.3.2.

4. The trace representation for a memory location is canonical within each sum
(either the function or an inner loop; see Section 5.2.3). Traces are defined in
terms of the program state at entry to the sum, and the trace used to represent
a location is not affected by any assignments or other operations performed.
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5. The trace representation for a memory location is not canonical across differ-
ent sum values. The same memory location may be represented by different
traces within a caller vs. its callee, or by an outer function vs. an inner split
loop. Each trace must then be converted when crossing these boundaries
(Section 5.3.6).

Type t root describes the possible stack- or statically-allocated root variables
for a trace, and is defined as follows:

• arg{A:int}: The stack location of argument number A (zero-indexed) to the
current function.

• glob{G:string}: The statically allocated location of global variable G. Note
that global variables and functions declared as static will be renamed to the
form ‘file:globname’ during parsing to ensure uniqueness.

• local{L:string}: The stack location of local variable L to this function.

• return: The stack location storing the current function’s return value.

• temp{TMP:string,WHERE:string}: The stack location of a temporary vari-
able used by this function. TMP is a unique identifier for the temporary, while
WHERE is a non-unique usage description for the temporary. Most temporary
variables store call return values, in which case WHERE indicates the called
function’s name.

• asm in{A:int}: Input argument to an inline assembly instruction.

• asm out{A:int}: Output argument to an inline assembly instruction.

• cstr{STR:string}: The statically allocated location of a constant string,
read-only global data.

Type t trace is then defined as follows:

• root{R:t root}: The stack/static location of root variable R.

• drf{T:t trace}: The result of dereferencing the trace T at entry to the current
sum. Any assignments to T performed later in the sum do not affect the
location represented by drf{T}. Note that for any two different pointer traces
T1 and T2, since drf{T1} and drf{T2} are different and thus T1 and T2 are
effectively non-aliased. If T1 and T2 are considered possibly aliased at entry
to the sum (due to the alias analysis), one of drf{T1} and drf{T2} will be
chosen by the memory model to represent the single target.

• fld{T:t trace,F:string,C:string}: Field F of T, with respect to composite
type C. Where T represents the base location of a structure, fld{T,F,C} is
the location resulting from adding to T the offset into type C of field F.
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• rfld{T:t trace,F:string,C:string}: Reverse of fld{T,F,C}. Where T
is an internal location for field F of a structure of type C, rfld{T,F,C} is
the base location of the structure itself. This models the common C idiom
of passing internal pointers to structures between functions, and then using
pointer arithmetic to recover the base pointer of the structure.

The predicate trace root(in T:t trace,R:t root) fetches the root variable
associated with each trace. For example, the trace fld{drf{root{arg{2}}},"f","str"}
has root arg{2}.

Traces sometimes need to be directly constructed or traversed by analyses, and
several predicates can be used to perform such operations.

• trace simplify(in SUM:sum,in OT:t trace,NT:t trace): Used when ap-
plying memory operations drf, fld, and rfld to an existing trace to construct
a new trace. Where OT is an existing trace with a single memory operation ap-
plied, applies any necessary simplifications to get a new trace NT which should
be used subsequently. These simplifications are necessary to ensure each con-
crete memory location has a single trace representation, and include folding to-
gether opposing fld and rfld operations (fld{rfld{T,F,C},F,C} is equiva-
lent to T), and folding recursive structure traversals (drf{fld{drf{T},"next","list"}}
is equivalent to drf{T}).

• trace sub(in T:t trace,TS:t trace,TR:t trace): Gets any subtrace TS
of T, setting TR to the series of memory operations needed to be applied to TS to
yield T. TR does not contain a root, but rather is a relative trace containing the
special value empty. For example, for the trace fld{drf{root{arg{0}}},"f","str"}
the following hold:

trace sub(*,fld{drf{root{arg{0}}},"f","str"},empty)
trace sub(*,drf{root{arg{0}}},fld{empty,"f","str"})
trace sub(*,root{arg{0}},fld{drf{empty},"f","str"})

• trace compose(in SUM:sum,in TS:t trace,in TR:t trace,T:t trace): Re-
verses trace sub, composing the subtrace TS with the relative trace TR to yield
the original trace T.

• trace relative(in T:t trace): T does not have a root, and instead con-
tains the special value empty and represents a series of memory operations
rather than an actual set of locations.

5.3.2 Softness and aggregate memory traces

Most traces manipulated within a function represent a single concrete memory
location. For example, traces for the stack locations of arguments, local variables,
and so forth always represent a single location. However, in order to capture the
possible properties of arrays, recursive structures and other aggregates a single
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trace will be used which represents every corresponding memory location within
that structure. These soft traces must be treated in special ways by many analyses.

Soft traces can be identified with the trace soft(in SUM:sum,in T:t trace,ST:soft type)
predicate, where ST indicates why the trace is soft (if it is so), chosen from these
values:

• array: T is an array of known length either stack/statically allocated, or inline
with some structure.

• ptarray: T is the target of some pointer passed in from outside SUM – T is
drf{PT} for some PT – and PT was used in pointer arithmetic somewhere in
SUM to walk down an array. Pointers passed in are soft only if multiple different
elements may be accessed through operations x[i], *(x+i) etc. Identifying
these requires interprocedural analysis and is performed as part of the alias
analysis (Section 5.4.3).

• recurse: T is a recursive structure whose links were traversed somewhere in
SUM to walk down the structure. As with ptarray, recursive structures with
multiple cells are soft only if multiple different cells were accessed, and again
identifying these requires the alias analysis to be run first.

• softsub: T contains a soft subtrace, and can thus represent multiple different
locations itself. If T is soft, drf{T} represents all the initial targets of the
locations represented by T.

5.3.3 Integer/location trace values

Values that a trace can possess are represented with the type t trace val.

• trace{T:t trace}: Address of the memory location(s) represented by T. If
trace T0 points to T1, T0 has value trace{T1}. trace{drf{T}} is also used
to model the initial value of an integer-typed location T passed into the sum
being analyzed. In this case drf{T} can be viewed as the location resulting
from casting T to a pointer and dereferencing it (legal to do in C); straight
assignments and reads of pointer and integer values are handled in the same
way within the memory model.

• nrep{N:t nrep}: Particular intermediate integer value resulting from a com-
putation performed within the current sum. These can represent integer con-
stants, integer arithmetic operations, coercion results, etc.

Several different models can be used for intermediate integer values computed
within a sum, each of which defines t nrep differently. For most purposes the model
used by ‘scalar.clp’ is best, which precisely models almost all integer operations
using values of type t nrep = scalar. Each scalar generated by the memory
model can be treated as abstract, though predicate scalar string(in scalar,out
string) generates a fairly readable representation for each value.
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Type scalar is defined as a set of sum values in ‘scalar.clp’, and primarily con-
sists of unconstrained initial trace values and unary/binary operations over these.
New scalar values can be constructed simply as instances of these sum values.

5.3.4 Guards and path-sensitivity

All conditions used to encode path-sensitive information and other constraints
within the memory model (and most additional analyses) are represented with
the type g guard = bval[g bit], i.e. boolean formulas with arbitrary combina-
tions of conjunction, disjunction and negation over variables of type g bit. Each
g guard represents a specific condition which either holds or does not hold in any
concrete execution, and can be freely combined with #and, #or and #not, or in-
spected with guard string(in g guard,out string). Rather than using #sat to
determine satisfiability, however, which just looks at the boolean connectives to de-
termine satisfiability and not the meaning of any arithmetic operations within the
scalar values in the guard, the following predicates should be used to test indi-
vidual g guard values. File ‘scalar sat.clp’ implements these predicates, converting
each scalar to a bitvector and applying bitwise operations over those vectors to
determine precisely the satisfiability of the formula.

• guard sat(in G:g guard): G is satisfiable, holding under at least one assign-
ment of values to its unconstrained variables.

• guard valid(in G:g guard): G is valid, holding for all possible assignments
of values to its unconstrained variables.

• guard implies(in G0:g guard,in G1:g guard): Under any assignment in
which G0 holds, G1 holds as well.

• guard equivalent(in G0:g guard,in G1:g guard): G0 and G1 hold for the
same set of assignments.

Satisfying assignments of type g guard asn can be constructed for guards and
used to instantiate other guards and trace values.

• guard sat asn(in G:g guard,ASN:g guard asn): G is satisfiable, and ASN is
a satisfying assignment for it.

• asn guard(in ASN:g guard asn,in G:g guard): G holds under the assign-
ment ASN.

• asn value(in ASN:g guard asn,in V:t trace val,N:int): The value of V
under the assignment ASN is N.

Type g bit is defined in scalar.clp, and primarily consists of boolean compar-
isons over scalar values. New comparison guards can be constructed with #id g
applied to values of this type.
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5.3.5 Path-sensitive points-to graphs

The path-sensitive points-to graph for each sum is comprised of two parts. First
we compute the conditions under which each program point is reachable, then we
refine with conditions for the per-program point value of traces, CIL expressions
and lvalues.

• guard(P:pp,in G:g guard): Program point P is reached by the function
when G holds. Of all the concrete executions for the current sum, those which
pass through P are exactly those under which G holds.

• val(in P:pp,in S:t trace,T:t trace val,G:g guard): At program point
P, the memory location represented by S has the value T when G holds. Of
all the concrete executions for the current sum, if P is indeed reached by
that execution, then for the T given by the guard G which holds under the
execution (multiple T/G pairs may exist for val), the value the value the
location represented by S has at P is that given by T.

• lval(in P:pp,in LV:c lval,S:t trace,G:g guard): At program point P,
the memory location referred to by source lvalue LV is S when G holds.

• eval(in P:pp,in E:c exp,T:t trace val,G:g guard): At program point
P, the value of source expression E is T when G holds.

• access(P:pp,T:t trace,AT:access type): At program point P, trace T may
be directly accessed, indicated by AT as either read or write.

• eguard(in P0:pp,in P1:pp,in G:g guard,EG:g guard): For any edge in
the CFG from P0 to P1 refine any condition G to EG according to the condi-
tion under which the CFG edge transition occurs. Where guard(P0,G0) and
guard(P1,G1), if EG&G1 holds, then G&G0 holds and the edge will be taken
during function execution. This predicate is most useful for analyses which
which define transfer functions for new path-sensitive properties, in which case
eguard should be used to refine any guard being added at P1.

The file ‘memory/guarddot.clp’ generates, for each function ‘foo’, a DOT graph
file ‘foo guard.dot’ which shows the guard for each program point in the CFGs of
‘foo’. The file ‘memory/valdot.clp’ generates, for each trace ‘x’ written within each
function ‘foo’, a DOT graph file ‘foo x val.dot’ which shows the values of ‘x’ and
associated guards for each program point in the CFGs of ‘foo’.

Example 5.5. Consider the following C program:

void foo(int a, int b, int c)
{
int x;
if (a) x = 0;
if (b) {
if (c) x = 1;
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[ebtrue{"#32"}]

true

[ebfalse{"#32"}] __arg1*

[eset{"#26"}][eset{"#36"}]

__arg1*

[ebfalse{"#16"}] __arg1* && __arg2*

[ebtrue{"#16"}]

nexit

[eset{"#20"}]

nentry

true

__arg0*

true

[eset{"#6"}]

[ebfalse{"#12"}]

[ebtrue{"#12"}]

[ebtrue{"#2"}]

[ebfalse{"#2"}]

Figure 5.5: DOT graph for Example 5.5

x = 2;
}
else {
if (c) x = 3;

}
}

Execute the ‘memory/guarddot.clp’ program. The resulting graph, in ‘foo guard.dot’,
is shown in Figure 5.5. Each node corresponds to a program point and is labelled
with the guard at that point. Note how the guard changes with each branch and
merge.

All propagation of val and generation of lval and eval is performed by memory.clp.
There are two important properties maintained by val. The first property is that
if val(P,S,T,G0) and guard(P,G1), G0 does not necessarily imply G1. To get the
condition under which S has value T at P and P is itself reachable, compute the
conjunction of G0 and G1.

Example 5.6. Consider the following C program:
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true

true

[ebfalse{"#7"}] __arg0*

[ebtrue{"#7"}]

nexit

[eset{"#11"}]

nentry

true

[eset{"#2"}]

Figure 5.6: DOT graph for Example 5.6 showing program point guards

void foo(int a)
{
int x = 0;
if (a) x = 1;

}

Execute the ‘memory/guarddot.clp’ and ‘memory/valdot.clp’ programs. The result-
ing graphs, in ‘foo guard.dot’ and ‘foo x val.dot’, are shown in Figures 5.6 and 5.7,
respectively. Note that before the second assignment ‘x = 1’ (eset{"#11"}), the
program point guard is arg0* indicating that the first argument must be non-zero,
but that the condition under which x has value 0 is true. To get the condition where
x has value 0 at this point and the point itself is reachable, compute the conjunction
of these two guards.

The second property maintained by val is that when the same trace can have
multiple different values at some point, the associated guards are disjoint unless
the trace itself is soft. This means that the single location referenced by the trace
can’t have two different values at once, but that if the trace is soft then the locations
it represents may have multiple different values.

Example 5.7. Consider the following C program:

void foo(int a)
{
int x;
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nexit

[!__arg0* -> 0, __arg0* -> 1]

nentry

[true -> x*]

[true -> 0]

[eset{"#11"}]

[true -> 0]

[eset{"#2"}]

[ebfalse{"#7"}]

[ebtrue{"#7"}]

Figure 5.7: DOT graph for Example 5.6 showing values of variable x

int y[100];
if (a) {
x = 0;
y[0] = 0;

}
}

Execute the ‘memory/valdot.clp’ program. The resulting graphs, in ‘foo x val.dot’
and ‘foo y val.dot’, are shown in Figures 5.8 and 5.9, respectively. Note that for
local variable x, the guards at exit from the function are disjoint, while for local array
variable y, the guards overlap - the initial (uninitialized) value of y is preserved,
indicating that even when the branch is taken not all elements of y were initialized.

5.3.6 Cross-procedure trace propagation

Almost any interprocedural analysis will need to propagate information about mem-
ory locations from a sum to its callers (or vice versa). Since the locations represented
by any given trace can differ between each sum, we get the notion of a trace scope.
A trace in the scope of a particular sum always represents the same set of locations.
Moreover, when propagating from one sum to another, traces in the scope of the
original sum need to be converted to traces in the scope of the new sum.

• trace visible(in SUM:sum,in T:t trace): Indicates whether T is a mem-
ory location that is either heap-allocated, statically-allocated, or stack-allocated
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[true -> 0]

[!__arg0* -> x*, __arg0* -> 0]

[eset{"#11"}]

nexit

nentry

[true -> x*]

[true -> x*]

[eset{"#6"}][ebfalse{"#2"}]

[ebtrue{"#2"}]

Figure 5.8: DOT graph for Example 5.7 showing values of variable x

[true -> y*]

[__arg0* -> 0, true -> y*]

[eset{"#11"}]

nexit

nentry

[true -> y*]

[true -> y*]

[eset{"#6"}][ebfalse{"#2"}]

[ebtrue{"#2"}]

Figure 5.9: DOT graph for Example 5.7 showing values of array y
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within the frame for a caller of SUM (i.e. outer loop/function or call). Traces
which are not visible are the stack locations of temporaries for inner loops of
a function, and temporaries, locals and arguments for the function itself.

• inst trace(in I:sum,in P:pp,in CT:t trace,T:t trace val,G:g guard):
For an isum edge isum(P, ,I), trace CT in the scope of I converts to trace T
in the scope of the sum containing point P, when G holds. T may be an interme-
diate integer which was passed to the callee I, for CT = drf{PCT} where PCT is
an integer-typed trace in I. inst trace is only defined if trace visible(I,CT).

• td inst trace(in I:sum,in P:pp,in T:t trace,CT:t trace,G:g guard):
Reverse of inst trace: for an isum edge isum(P, ,I), trace T in the scope
of the sum containing point P converts to trace CT in the scope of I, when G
holds.

• inst may access(in I:sum,in CT:t trace,AT:access type): For an isum
edge isum( , ,I), trace CT in the scope of I may be accessed as read or write
as indicated by AT. Useful for filtering the results of td inst trace, though
td inst trace will still be generated for traces that are not accessed by the
target. This information is computed by the alias analysis (Section 5.4.3) and
this predicate will never hold if the alias analysis has not been run.

Predicates inst trace and td inst trace bear a close relation with the mean-
ing of traces themselves. Recall from Section 5.3.1 that the drf{T} trace refers to
the initial target of T at entry to the sum that T is in the scope of. For an isum call
or loop SUM then, we can convert a drf{CT} trace in the scope of SUM by converting
CT to some trace T, then simply evaluating T at the call site itself using val.

Example 5.8. Consider the following C program:

void bar(int *x);
void foo(int c)
{
int a, b;
int *x;
if (c) x = &a;
else x = &b;
bar(x);

}

Execute the following Calypso program:

import "memory/scalar_sat.clp".
analyze session_name("cil_body").

predicate call_target(T:t_trace,GSTR:string).
dircall(I,"bar"), icall(P,_,I),

inst_trace(s_call{I},P,drf{root{arg{0}}},trace{T},G),
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guard_string(G,GSTR),
+call_target(T,GSTR).

?- call_target(T,G).

The above program converts the target of the first parameter to the call to ‘bar’ to
traces in the scope of ‘foo’ itself. The following output should be printed:

call_target(root{local{"a"}},"__arg0*").
call_target(root{local{"b"}},"!__arg0*").

The first parameter to ‘bar’ may be either of the local variables in ‘foo’, though
under different conditions. inst trace maintains the same properties of val in
that different traces are converted to under disjoint conditions except when the
traces are soft.

It may, however, be the case that the same trace is converted to by two different
callee traces, in the presence of aliasing. inst trace may overapproximate the
guards in this case; see 5.4 for more information.

Other types of values which include traces have, in effect, the same scope as
those traces and need to be converted when propagating from one sum to another.

• inst guard(in I:sum,in P:pp,in CG:g guard,G:g guard): Guard CG in
the scope of callee I at P converts to G in the scope of the sum containing
point P.

• inst scalar(in I:sum,in P:pp,in CS:scalar,S:scalar): Scalar CS in the
scope of callee I at P converts to S in the scope of the sum containing point P.

5.3.7 Freshly allocated data

Data that was allocated via malloc or similar function calls (and their wrappers)
are represented as drf{root{temp{T,W}}} where T is the temporary storing the
return value of the function call. While within the procedure these are treated like
any other trace, propagating information about them to callers in cases where they
escape (returned or assigned through side effects to caller pointers) is trickier as
the caller has no trace to refer to them. In cases where the freshly allocated value
escapes, the alias analysis identifies the trace through which it escapes and supplies
this to the memory analysis:

• exit trace rename(in SUM:sum,in T:t trace,NT:t trace): If T was freshly
allocated within the current SUM (i.e. the trace root is temp{ , }), then NT is
the trace through which T escapes. If T escapes through multiple different
pointers, the alias analysis will choose a single one and reflect the aliasing
introduced through other edges (Section 5.4). If T is not freshly allocated,
then NT is equal to T.

Example 5.9. Consider the following C program:
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void* malloc(int len);
void foo(int **fill)
{
int *v = malloc(sizeof(int));
*fill = v;

}

Run the alias analysis ‘aliasing/aliasing.clp’ and then execute the following Calypso
program:

import "memory/scalar_sat.clp".
analyze session_name("cil_body").

predicate escape_target(T:t_trace,NT:t_trace).
dircall(I,"malloc"), icall(P,_,I),

inst_trace(s_call{I},P,drf{root{return}},trace{T},_),
exit_trace_rename(s_func,T,ESCAPE),
+escape_target(T,ESCAPE).

?- escape_target(T,NT).

The above program identifies the trace through which the return value of ‘malloc’
escapes within ‘foo’. The following output should be printed:

escape_target(drf{root{temp{"ciltmp","malloc"}}},drf{drf{root{arg{0}}}}).

Note that within the caller, the alias analysis (and as a result, the memory analysis)
will not introduce a fresh location for the target fill after the call, and effectively
merges the original target of fill with the location allocated by ‘foo’. There is
currently no clean way to differentiate the two values (typically the old one is freed,
or both values are part of an unbounded soft structure), and for some analyses this
can degrade precision. This will be addressed in a future release.

5.4 Alias Analysis

The Saturn alias analysis give a conservative and fairly precise approximation of
all the inter-procedural aliasing information for the functions and summaries in
a program. The alias analysis and memory model (Section 5.3) work in tandem;
the alias analysis generates only inter-procedural information, i.e. that applying to
summaries, types, or globals as a whole, and the memory model refines this to
generate points-to graphs and related for each point in each function. The memory
model (or rather, analyses built on top of the memory model) may be run without
aliasing information, though the results will not be conservative.

The alias analysis itself is built on top of the memory model. Because of this
interdependency between the two, the alias analysis is responsible not just for com-
puting inter-procedural aliasing information (Section 5.4.1), but also all other inter-
procedural information the memory model depends on. This includes identifying
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soft traces (Section 5.4.2), use/mod information for summaries (Section 5.4.3), and
indirect call targets (Section 5.4.4).

The alias analysis includes several Calypso files:

• ‘aliasing/aliasing.clp’: Main analysis that runs over each function and com-
putes aliasing, soft trace, and use/mod information.

• ‘aliasing/aliasinginit.clp’: Analysis that runs over each global variable and
computes information derived from static initializers.

• ‘funptr/funptr.clp’: Analysis that identifies indirect call targets and function
pointers passed into each function.

The above files should be run as a cofixpoint. If one or more of the files is
omitted then the analysis results will be incomplete with respect to the information
computed by those files. Also note that if the analyzed C program itself is open,
i.e. missing callers or callees of certain functions, then the analysis results will be
incomplete with respect to the missing code and will not be conservative.

clpa --timeout 100 aliasing/aliasing.clp aliasing/aliasinginit.clp funptr/funptr.clp

The alias analysis Calypso files above produce no text output. Alternative ver-
sions ‘aliasing/aliasingprint.clp’, ‘aliasing/aliasinginitprint.clp’ and ‘funptr/funptrprint.clp’
behave identically except that they print out the main facts generated. This is help-
ful for quickly seeing what the analysis does, and these versions of the files are used
in the examples below.

Regardless of which way it is run, the alias analysis populates the following
summary databases. To do a fresh restart of the alias analysis, just delete these
databases first:

• sum entry.db, sum exit.db, sum comp.db, sum glob.db: Inter-procedural
aliasing information.

• sum usemod.db, sum usemod comp.db, sum usemod glob.db: Soft trace and
usemod information.

• sum funptr.db, sum funptr entry.db: Indirect call targets and associated
information.

The alias analysis also generates UI databases ‘display.db’ and ‘search.db’ which
can be consumed by the Saturn UI (7.5) to show not only which aliasing relation-
ships were added by the analysis, but also why they were.

5.4.1 Interprocedural aliasing

Several different kinds of aliasing information are produced by the alias analysis.
These include side effects on summaries, entry aliasing specific to summaries, global
invariants and type invariants. These all indicate behaviors other than the default
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used by the memory model, that each trace S always points to drf{S}; all inter-
procedural information generated indicates may-aliasing, that two pointers may be
aliased rather than must be aliased. When generating the entry points-to graph for
a summary, or applying side effects on a trace at each isum CFG edge, the memory
model takes all the following kinds of aliasing into account to different kinds of
aliasing into account, introducing new unconstrained bits into the val relation for
each possible alias introduced.

Summary side effects

Side effects on loop and functions are assignments of pointers which might affect
the behavior of any summary which calls that loop or function.

Example 5.10. Consider the following C program:

void foo(int **px, int *y)
{

*px = y;
}
int* bar(int *z)
{

int *a;
foo(&a,z);
return a;

}

Run the alias analysis, including ‘aliasing/aliasingprint.clp’. The following output
should be printed:

str_spoints("foo",s_func,fn_exit,"__arg0*","__arg1*").
str_spoints("bar",s_func,fn_exit,"return","__arg0*").

The first line indicates that at exit from ‘foo’ *px may have been updated to point
to the target of y. This was then propagated up to ‘bar’, where the second line
indicates that at exit from ‘bar’ its return value may point to the target of its first
argument z.

Now execute the ‘memory/valdot.clp’ program, and view the ‘bar a val.dot’
DOT graph produced (See Figure 5.10). Variable a in ‘bar’ may point to the
initial target of z after the call to ‘foo’, depending on whether the unconstrained
bit exit bit(s call{"#2"}, arg0*, arg1*) holds.

Summary entry aliasing

Entry aliasing on a loop or function indicate pointers passed in by any caller may be
aliased. Entry aliasing is only generated when the aliasing may affect the behavior
of the loop or function. The use/mod information is examined, and if one or both
of the pointers are not directly accessed (say, when a global variable is passed into
a function), or if neither of the pointers is written through, then the entry aliasing
is not generated.
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nexit

[!exit_bit(s_call{"#2"},__arg0*,__arg1*) -> a*, exit_bit(s_call{"#2"},__arg0*,__arg1*) -> __arg0*]

[true -> a*]

[!exit_bit(s_call{"#2"},__arg0*,__arg1*) -> a*, exit_bit(s_call{"#2"},__arg0*,__arg1*) -> __arg0*]

[ecall{"#2"}]

[eset{c_instr{"s#1","retset"}}]

nentry

Figure 5.10: DOT graph for Example 5.10

Example 5.11. Consider the following C program:

void foo(int *x, int *y)
{

*x = *y;
}
void bar(int **px, int *y)
{

foo(*px, y);
}
void baz()
{

int a;
int *pa = &a;
bar(&pa, &a);

}

Run the alias analysis, including ‘aliasing/aliasingprint.clp’. The following output
should be printed:

str_spoints("bar",s_func,fn_entry,"__arg0*","__arg1*").
str_spoints("foo",s_func,fn_entry,"__arg0","__arg1*").

The first line is generated during the analysis of ‘baz’ and indicates that at entry
to ‘bar’ that *px and y may be aliased and point to the same location. This was
then propagated down to the call to ‘foo’, where the second line indicates that at
entry to ‘foo’ its two parameters may be aliased.

Now execute the ‘memory/valdot.clp’ program, and view the ‘foo arg0 val.dot’
DOT graph produced (See Figure 5.11). The first argument to ‘foo’ may be
aliased with its second argument, depending on whether the unconstrained bit
entry bit(p bi{"#1"}, arg0, arg1*) holds.
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[!entry_bit(p_bi{"#1"},__arg0,__arg1*) -> __arg0*, entry_bit(p_bi{"#1"},__arg0,__arg1*) -> __arg1*]

[!entry_bit(p_bi{"#1"},__arg0,__arg1*) -> __arg0*, entry_bit(p_bi{"#1"},__arg0,__arg1*) -> __arg1*]

[eset{"#2"}]

nexit

nentry

Figure 5.11: DOT graph for Example 5.11

Note that the entry aliasing in this example would not be generated if ‘foo’ did
not write to x, or if ‘foo’ were a function prototype with no implementation (and
hence no use/mod information).

Global invariant aliasing

Global invariants capture aliasing that is generally expected to hold of particular
global variables. These may hold at entry/exit from any summary, and thus don’t
need to be explicitly accounted for as side effects or entry aliasing on particular
summaries.

Global invariants are generated whenever any two global variables are found to
share aliased data. This behavior can be tuned to specific code bases by creat-
ing a new file that imports ‘aliasing/aliasing.clp’, and adding new instances of the
omit glob spoints predicate described therein.

Example 5.12. Consider the following C program:

int *f, *g;
void foo(int *x, int *y)
{

*x = *y;
}
void bar()
{

foo(f, g);
}
void baz()
{

f = malloc(4);
g = f;

}

Run the alias analysis, including ‘aliasing/aliasingprint.clp’ and ‘aliasing/aliasinginitprint.clp’.
The following output should be printed:
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str_glob_spoints("f","f","g*").
str_spoints("foo",s_func,fn_entry,"__arg0","__arg1*").

The first line is generated during the analysis of ‘baz’ and indicates that global
pointers f and g may generally alias one another at entry/exit to any summary in
the program. This was then propagated to the analysis of ‘bar’ where the second
line indicates that at entry to ‘foo’ its two parameters may be aliased.

A subtlety with global pointers is that if a pointer references heap-allocated
data, any aliasing it is involved in will be added only if the initialization of that
pointer occurs within the analyzed program. If the f = malloc(4); line were
omitted from the above program, the aliasing would not be added unless another
function initialized f with malloc’ed data. This is only an issue when analyzing
open programs without full initialization code or a ‘main’ function.

Type invariant aliasing

Type invariants capture aliasing that is generally expected to hold of any value of
a particular type. As with global invariants, these may hold at entry/exit to any
summary and aren’t explicitly summarized except on the type itself. The type of a
value is determined by the memory model by looking both at the given C type in
the program as well as any casts performed. This assumes that individual memory
locations in the program are never cast between incompatible types, a memory
safety property that will be checked by a forthcoming analysis.

Type invariants are generated whenever two fields (or chains of field/derefs)
from a structure may alias within the same structure, as well as when a field of a
structure is updated directly by a function to point to some other global variable.
This behavior can be tuned to specific code bases by creating a new file that im-
ports ‘aliasing/aliasing.clp’, and adding new instances of the omit glob spoints
predicate described therein.

Example 5.13. Consider the following C program:

struct str {
int *f, *g;

};
void foo(int *x, int *y)
{

*x = *y;
}
void bar(void *v)
{

struct str *s = v;
foo(s->f, s->g);

}
void baz(struct str *s)
{

s->f = s->g;
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}

Run the alias analysis, including ‘aliasing/aliasingprint.clp’. The following output
should be printed:

str_comp_spoints("str",".f",".g*").
str_spoints("foo",s_func,fn_entry,"__arg0","__arg1*").

The first line is generated during the analysis of ‘baz’ and indicates that fields f
and g of values of type str may generally alias one another at entry/exit to any
summary in the program. This was then propagated through the cast in ‘bar’ where
the second line indicates that at entry to ‘foo’ its two parameters may be aliased.

5.4.2 Soft trace identification

As described in Section 5.3.2, the memory model and analyses depending on it
must identify which traces are soft and can represent more than one actual memory
location. Flat stack or global arrays of known length are handled directly by the
memory model, but trickier constructs require softness information computed by
the alias analysis.

It destroys precision to assume every pointer passed into a function is an array,
or that every location that contains recursive links is actually traversed. The alias
analysis identifies as soft only those pointers used in arithmetic, and only those lo-
cations whose links are traversed. This must be done transitively through summary
calls as well, pushing information bottom up as well as through globals and types
to identify all soft traces.

Example 5.14. Consider the following C program:

void foo(int **buf)
{

buf[1] = buf[2] = 0;
}
void bar(int **x)
{

*x = 0;
foo(x);

}

Run the alias analysis and then execute the following program:

import "memory/scalar_sat.clp".
analyze session_name("cil_body").

predicate inter_soft(FN:string,T:t_trace,ST:soft_type).
cil_curfn(FN), access(_,T,_), trace_soft(s_func,T,ST),

+inter_soft(FN,T,ST).

?- inter_soft(FN,T,ST).
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The following output should be printed:

inter_soft("foo",drf{root{arg{0}}},ptarray).
inter_soft("bar",drf{root{arg{0}}},ptarray).

The buffer target is marked as soft in both ‘foo’ and ‘bar’, even though it is only
accessed as an array within ‘foo’. Were it not marked as soft within ‘bar’, then at
the call to ‘foo’ it would appear from the memory model as though every cell in the
buffer was 0, when that is not the case.

5.4.3 Use/mod information

Use/mod information is very useful to most analyses. Through the inst may access
predicate described in Section 5.3.6, the memory model uses it to identify which
integers should be clobbered after each isum, the alias analysis uses it to trim
down the relevant entry aliases, and client analyses can use it to restrict top-down
propagation.

Use/mod information also typically dominates the remaining information com-
puted by the alias analysis, and can be a significant obstacle to scalability. To
alleviate this, the alias analysis aims to compact the use/mod information as much
as possible while still retaining precision. This results in several ways to summa-
rize use/mod information, which are folded together through the inst may access
predicate:

• Per-summary use/mod information: it is prohibitively expensive to record
every single trace that may be accessed by every single summary. To restrict
the amount of information computed per-summary then, Precise per-trace
information is only kept down to a certain number of dereferences (zero for
globals, one for function arguments and loop local variables). Beyond this,
blanket deepread and deepwrite access information is recorded on traces
which covers all data transitively reachable from those pointers.

• Per-type use/mod information: the above per-summary strategy is too im-
precise by itself; many structures have read-only fields, and if a deepwrite is
applied to the base of the structure due to some other field being written, then
the targets of the read-only fields will be marked as written as well. The set of
structure fields through which writes are ever performed within the program
is recorded by the alias analysis and used within inst may access to refine
the set of writes, avoiding the above situation.

• Per-global use/mod information: in large systems many global variables are
immutable beyond whichever value they were assigned by their static ini-
tializer. These include fixed integer values and large global arrays of data.
Use/mod information for these globals is not meaningful, and so the alias
analysis computes the set of globals which could ever be written by the pro-
gram and records use/mod only for those globals.
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5.4.4 Indirect call targets

Indirect call targets are computed by the stand-alone analysis ‘funptr/funptr.clp’.
For conservative results this file must be run as a cofixpoint with the other alias
analysis files, but for flexibility (and reasonably close to conservative results) the
other two alias analysis files may be run first followed by the function pointer
analysis. This is a top-down analysis (vs. the bottom-up ‘aliasing/aliasing.clp’) that
augments the memory model with entry information about function pointer targets
passed into the function. This is then used to compute and store the complete set
of which functions each indirect call could target, and which may be consumed by
other analyses via the anycall predicate.

Example 5.15. Consider the following C program:

void fn1(int);
void fn2(int);
void (*pfn)(int) = fn1;
void foo()
{

pfn = fn2;
}
void bar(int x)
{

(*pfn)(x);
}

Run the alias analysis, making sure to include all three files. The following output
should be printed:

str_indirect("bar","*pfn","fn1").
str_indirect("bar","*pfn","fn2").

The indirect call within ‘bar’ may target either ‘fn1’ or ‘fn2’. There is currently no
additional information supplied indicating the conditions under which indirect calls
may target their various possible callees.

Note that the points-to edges for global variable pfn used to identify these targets
are not explicitly printed out by ‘aliasing/aliasingprint.clp’ nor ‘aliasing/aliasinginitprint.clp’.
These aliasing relationships for immutable global data such as functions are recorded
differently by the alias analysis and not directly incorporated by the memory model
(aliasing over immutable data does not change the possible effects of the assignments
considered by the memory model).

5.5 The NULL Dereference Analysis

This section describes how to run the provided null dereference bug finder.
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5.5.1 Running NULL

The null analysis is run by typing:

clpa --no-fixpoint --timeout 100 CLPA_DIR/analysis/null/null.clp

Since the null analysis is a bug finder, it does not support fixpointing and will enter
an infinite loop if fixpointing is enabled. Also, it is highly recommended to set a
resonable time out limit to avoid thrashing on very large functions.

Important Facts and Advice:

• The null analysis performs its own side effect analysis independent from the
provided alias analysis. It is not recommended to run the null analysis in
the presence of aliasing summaries; if these summaries are present then some
warnings may be missing from the results.

• The null analysis reports significantly more false positives in the presence
of arrays and pointer arithmetic. The reason for this is that since no strong
updates are performed on these constructs, any NULL assignment contaminates
other elements of the same data structure. Thus, be aware that you may
observe strange error messages in the presence of such data structures.

• Sources of unsoundness: It is important to note that this analysis is unsound;
that is, it may not find all the null bugs that a program may have. Some
of the souces of unsoundness that we are aware of are the following: First,
the null analysis uses an unsound side-effect analysis. Therefore, it does not
necessarily account for all function(and loop) side effects that cause a pointer
to be assigned to NULL. Another obvious source of unsoundness is that the
null analysis does not do a fixpoint computation. Function summaries are
computed exactly once, and not until the summaries stabilize.

5.5.2 Errors detected

In this section, we discuss the four different classes of errors that the null dereference
analysis tracks and present examples illustrating each of these error classes.

NULL flow errors

This part of the null analysis detects errors where a variable is assigned to NULL
and there exists a feasible execution path such that this NULL value can flow to a
site of dereference.
Example 1:

void test(int* p, int* q, bool flag)
{
int a;
if(flag) p=NULL; (*)
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q = p;
a = *q; (**)

}

In this example, p is set to NULL, aliased by q and eventually dereferenced. Since
there is an execution path where the NULL value assigned to p at (*) can flow to the
dereference at (**), the analysis reports an error.

Null flow errors can also be inter-procedural:
Example 2:

void bar(int *p, bool flag)
{
int a;
if(flag) a = *p;
else a = -1;

}

void foo(bool flag)
{
int *p;
if(flag) p=NULL;
else p=malloc(sizeof(int));
bar(p, flag);

}

The analysis reports an error for the call to bar in foo because p is set to NULL
if flag is true, and bar dereferences p if flag is true, resulting in an error. However,
changing foo to:

void foo(bool flag)
{
int *p;
if(!flag) p=NULL;
else p=malloc(sizeof(int));
bar(p, flag);

}

will not cause the analysis to report an error since there is indeed no error in
the call to bar.

The analysis is fully path-sensitive within one function and uses the correlation
analysis to achieve selective path-sensitivity accross function boundaries. In cases
where using the correlation analysis is too imprecise and results in many false pos-
itives, the analysis can be made to report less false positives by enabling predicate
certain deref only in the run script.
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Conditional misuse errors

This part of the analysis detects errors that arise from conditional misuse, i.e. a
conditional ensures that a variable is NULL before dereferencing it.
Example: Error within one function

void test(int* p, int flag){
if(!p || flag)
*p = 8;

}

In this example, p is dereferenced whenever p is NULL, resulting in a run-time
crash. Thus, the analysis reports an error.
Example: Interprocedural error

void bar(int *p){
*p = 7;

}

void foo(int* p, int flag) {
if(!p || flag) bar(p);

}

This example is similar to the one above except that it involves a function call. foo
calls bar whenever p is NULL, but bar in turn dereferences p. Thus, the analysis
reports an error for the call to bar.

Inconsistency errors

In addition to the errors presented above, the null analysis also detects inconsistency
errors. Informally, an inconsistency arises if a variable is checkd for NULL before
dereferencing it at one location, but not checked for NULL at another location which
dereferences it. The detection of inconsistencies is not syntactic, but rather seman-
tic: The analysis does not pattern match on conditionals that compare a variable
with a given name against NULL. The analysis reports an inconsistency error if the
following condition holds: For two pointer expressions that have the same guarded
points-to set, one pointer is dereferenced without ensuring it is non-NULL, but the
other one is dereferenced after checking it is NULL. This technique of detecting incon-
sistencies allows us to naturally capture any possible aliasing relationships between
pointers. Furthermore, we determine if a location is checked for NULL by querying
the statement guard. This allows the analysis to detect even unconventional forms
of NULL checks.
Example 1: Simple Inconsistency

void foo(int* p){
if(p) *p = 2;
*p = 3;
}
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The analysis reports an inconsistency error in foo because the first line of the
function assumes p could be NULL, while the second line ignores this possibility.
Therefore, either the check on the first line is defensive or p is actually allowed to
be NULL and leads to a crash on the second line.
Example 2: A more complicated inconsistency error

void foo(int* p){
int * q = p;
bool flag = (p==0);
if(!flag) *p = 2;
*q = 3;
}

The analysis again reports an inconsistency error in foo. The reason for this is
as follows. First, note that p and q are aliases of one another, so the assumptions
made about p should be the same as those made about q. Next, the check !flag
ensures that p is non-NULL at line 3, but q is dereferenced without making sure that
it is non-NULL. Thus, the analysis reports an inconsistency error.

The null analysis also tracks inconsistencies across function boundaries. If a
function assumes that a pointer may be NULL by testing it for NULL and then passes
the same pointer (or its alias) to another function which dereferences it without
testing it against NULL, the analysis reports an inconsistency error.

Interprocedural Inconsistency Example:

void bar(int* q){
*q = 8;

}
void foo(int* p)
{
int* q =p;
if(p) *p = 8;
bar(q);

}

In function foo, p is tested for being NULL, indicating the possibility that foo may
have been called with a NULL parameter. However, an alias of p is unconditionally
dereferenced inside a callee of foo, causing the analysis to report an inconsistency
error.

NULL return errors

Another source of null dereference errors is the dereference of return values of func-
tions which may return NULL. Our analysis reports a return-NULL error if a function
dereferences a possibly-NULL return value and the analysis cannot prove that the
conditions at the call site imply that a non-NULL value will be returned by the called
function.
Example:
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int** bar(int size){
int** p = malloc(sizeof(int*));
if(!p) return NULL;
for(int i=0; i<size; i++){
p[i] = malloc(sizeof(int));
if(!p[i]) return NULL;

}
return p;

}
void foo(int size)
{

int** arr = bar(size);
arr[0][0] = -1; (*)

}

The analysis reports a return-NULL error for the line marked with (*) because
even though bar can return NULL, the return value of bar is dereferenced without
testing it is non-NULL so that a NULL dereference is possible.



Chapter 6

Abstract Semantics

This chapter gives an abstract description of the memory analysis. Section 6.1 gives
the preliminaries. Section 6.2 describes how expressions, lvalues, and conditions
are evaluated. Section 6.3 describes how locations are instantiated at call sites.
Section 6.4 describes what interprocedural aliasing information the memory analysis
consumes. Section 6.5 describes how the memory analysis computes sound, flow-
sensitive, path-sensitive points-to information of a procedure.

6.1 Preliminaries

This chapter uses the following functions to distinguish among different kinds of
program variables:

• Global is the set of global variables.

• Var(P ) is the set of all formal parameter and local variables of procedure P .

• FormalParam(P, i) is the ith formal parameter variable of procedure P .

• FormalReturn(P ) is the formal return variable of procedure P .

• ActualParam(P, k, i) is ith actual parameter variable passed to call site k in
procedure P .

• ActualReturn(P, k) is a actual return variable of a call site k in procedure P .

Let LocationP be the set of abstract locations of procedure P . The superscript
is omitted when the procedure is clear from context. The abstract locations of
a procedure are disjoint from the abstract locations of any other procedure, so
LocationP ∩LocationQ = ∅ for any P 6= Q. Henceforth, abstract locations are called
simply locations. Let EnvP ∈ (Global ∪ Var(P )) → LocationP be a total, injective
function that assigns locations to the global, formal, and local variables of P . The
range of EnvP is the set of root locations, RootsP .
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Let βP be a set of boolean variables. Let GuardP be the set of propositional
formulas over βP and atomic predicates on locations in LocationP . Let GuardP

β be
the propositional formulas only over the boolean variables in βP ; locations do not
appear these formulas.

A guarded points-to graph γP ∈ G = (LocationP × LocationP ) → GuardP gives
the condition under which one location points to another location. If γP (l1, l2) = φ,
then l1 may point to l2 only when formula φ is true. The default points-to graph,
γdef ∈ (LocationP × LocationP ) → {true, false}, satisfies the following conditions:

• Every location that is not a root is pointed to by at least one location.

(∀l2 ∈ Location− Roots) (∃l1 ∈ Location) γdef (l1, l2) (6.1)

• Every root is not pointed to by any location.

(∀l1 ∈ Location) (∀l2 ∈ Roots) ¬γdef (l1, l2) (6.2)

• Every location points to at least one location.

(∀l1 ∈ Location) (∃l2 ∈ Location) γdef (l1, l2) (6.3)

• Every location points to at most one location.

(∀l1, l2, l3 ∈ Location) ((γdef (l1, l2) ∧ γdef (l1, l3)) ⇒ l2 = l3) (6.4)

• Every location is pointed to by at most one location.

(∀l1, l2, l3 ∈ Location) ((γdef (l2, l1) ∧ γdef (l3, l1)) ⇒ l2 = l3) (6.5)

We use the following operations on points-to graphs. The least upper bound of
points-to graphs is

(γ1 t γ2)(li, lj) = γ1(li, lj) ∨ γ2(li, lj)

The Refine ∈ (Guard×G) → G function refines a points-to graph by restricting all
points-to edges by a guard:

Refine(φ, γ)(li, lj) = γ(li, lj) ∧ φ

Let an unguarded points-to graph be a points-to graph where all points-to edges are
unconditionally true or false. We define an operation σ that replaces the guards in
an unconditional points-to graph with formulas enforcing that a location points to
at most one location at a time. Let σ ∈ G → (Location×Location) → Guardβ be a
function that assigns formulas over boolean variables to points-to edges in a given
points-to graph and satisfies the following conditions:

• Every location points to at most one location at a time.

∀γ ∈ G ∀l1, l2, l3 ∈ Location. l2 6= l3 ⇒ ¬(σ(γ)(l1, l2) ∧ σ(γ)(l1, l3)) (6.6)
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• Every location points to at least one location.

∀γ ∈ G ∀l1 ∈ Location.

 ∨
l2∈Location

σ(γ)(l1, l2)

 (6.7)

• If a points-to relationship does not exist in the unguarded points-to graph, it
does not exist in the guarded points-to graph.

∀γ ∈ G ∀l1, l2 ∈ Location ¬γ(l1, l2) ⇒ ¬σ(γ)(l1, l2) (6.8)

6.2 Expression and Lvalue Evaluation

Expression evaluation is defined by inference rules with judgements of the form

Γ `exp e : E

where Γ is a points-to graph in which the expression e is evaluated and E ∈
Location → Guard is a function mapping each location l to the condition under
which the value of e points to l. Note that expressions are side-effect free; the
points-to graph is not affected by expression evaluation.

Lvalue evaluation is defined by inference rules with judgements of the form

Γ `lval e : E

where again Γ is a points-to graph, e is an lvalue, and E ∈ Location → Guard is a
function mapping each location l to the condition under which l is the lvalue e.

Boolean condition evaluation is defined by inference rules with judgements of
the form

Γ `cond e : C

where Γ is a points-to graph, e a boolean expression, and C ∈ Guard × Guard is a
set of pairs of formulas where (φ, ψ) ∈ C means e represents the condition φ under
guard ψ.

6.3 Instantiation

A location instantiation Ik ∈ (LocationQ × LocationP ) → Guard maps a location
lQ of a callee Q and a location lP of a caller P at call site k in P to the condition
under which lQ and lP represent the same location. The location instantiation is
defined by the inference rules below, which use judgements of the form

ΓP `instk
lQ : lP , φP

where lQ is a location of procedure Q, lP is a location of procedure P , and φP is
the condition under which lQ and lP represent the same set of concrete locations.
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• Consider a global variable g. A location lQ in callee Q instantiates to location
lP in caller P if lQ is the location assigned to global g in procedure Q, and lP

is the location assigned to global g in procedure P .

g ∈ Global lQ = EnvQ(g) lP = EnvP (g)

ΓP `instk
lQ : lP , true

• Consider the ith actual parameter variable ai at a call site k in a caller P
and the ith formal paramater variable fi in a callee Q. Then, the location
lQ instantiates to a location lP under the condition where the location of fi

points to lQ in γdef and the location of ai points-to lP in ΓP .

ai = ActualParam(P, k, i) fi = FormalParam(Q, i)

ΓP `instk
lQ : lP ,ΓP (EnvP (ai), lP ) ∧ γQ

def (EnvQ(fi), lQ)

• Consider the actual return variable a at a call site k in a caller P and the
formal return variable f in a callee Q. Then, the location lQ instantiates to a
location lP under the condition where the location of f points to lQ in γdef

and the location of a points-to lP in ΓP .

a = ActualReturn(P, k) f = FormalReturn(Q)

ΓP `instk
lQ : lP , γP

def (EnvP (a), lP ) ∧ γQ
def (EnvQ(f), lQ)

• Consider a location l′Q in callee Q that instantiates to location l′P in caller
P under condition φ. Then, a location lQ in Q instantiates to location lP in
P under the conjunction of φ, the condition under which l′Q points to lQ in
Q’s default points-to graph, and the condition under which l′P points to lP

in P ’s points-to graph at call site k.

ΓP `instk
l′Q : l′P , φ

ΓP `instk
lQ : lP , φ ∧ γQ

def (l′Q, lQ) ∧ ΓP (l′P , lP )

6.4 Alias Analysis

The alias analysis computes an aliasing summary for each procedure consisting of an
entry points-to graph and an exit points-to graph. The alias analysis also computes
a points-to graph for each global variable and a points-to graph for each type. A
type points-to graph of a structure type expresses which fields of the structure type
may point to the other fields of the same structure type over all instances of the
structure type in the program. Define

ProcSummary(P ) = (γP
entry, γ

P
exit) the summary of procedure P

GlobalSummary(G) = γG
global the summary of global G

TypeSummary(T ) = γT
type the summary of type T
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6.5 Summary Generation

The memory analysis consumes the summaries generated by the alias analysis to
compute sound, flow-sensitive, path-sensitive points-to information of a procedure.
Define γP

entry, γ
P
exit, γ

P
global, γ

P
type as

(γP
entry, γ

P
exit) = ProcSummary(P )

γP
global =

⊔
G∈Global

InstGlobalP (GlobalSummary(G))

γP
type =

⊔
T∈Type

InstTypeP (TypeSummary(T ))

The functions InstGlobalP and InstTypeP are location instantiation functions that
instantiate the locations used in the global and type summaries to locations of P .

The following inference rule states a condition under which the summary for a
procedure is sound. The rule uses judgements of the form Γ ` s; Γ′ where Γ is the
points-to graph in which statement s is executed, and Γ′ is the points-to graph after
which statement s is executed.

Γinit = Initialize(γdef , γentry, γglobal, γtype)
Γinit ` s; Γfinal

Γinit ` proc P s,Γfinal

Section 6.5.1 explains the Initialize function. Section 6.5.2 gives inference rules
for statements.

6.5.1 Initial Points-to Graph

The memory analysis first computes a sound initial points-to graph, Γinit = Initialize(γP
def , γ

P
entry, γ

P
global, γ

P
type).

The function Initialize ∈ G4 → G computes the initial points-to graph by merging
the default, entry, global, and type points-to graphs and associating a guard with
each points-to edge which encodes disjointness among the targets of a particular
location. Let γmerge be the points-to graph that merges the default, entry, global
and type points-to graphs defined by

γmerge =
⊔
{γP

def , γ
P
entry, γ

P
global, γ

P
type}

Then,
Initialize(γdef , γentry, γglobal, γtype)(li, lj) = σ(γmerge)(li, lj)

6.5.2 Statements

The statements that may appear in a procedure are assignments, branches, and
calls. This section describes the inference rule for each kind of statement.
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Assignments

The inference rule for assignment statements is

Γ `lval e1 : E1 Γ `exp e2 : E2

Γ ` e1 := e2;Assign(Γ, E1, E2)

The function Assign ∈ (G × (Location → Guard)× (Location → Guard)) → G is the
points-to graph transfer function for an assignment statement. Define

Assign(Γ, E1, E2)(li, lj) = [E1(li) ∧ E2(lj)]∨

∨
l 6=li

E1(l) ∧ Γ(li, lj)

∨[Soft(li) ∧ Γ(li, lj)]

where Soft(l) is the condition under which the location l represents more than one
concrete memory location. For example, an array may be modeled by a single soft
location.

Branches

The inference rule for branch statements is

Γ ` s1; Γ1

Γ ` s2; Γ2

b is a fresh boolean variable
Γ ` if e s1s2;Refine(b,Γ1) t Refine(¬b,Γ2)

The rule joins the points-to graphs of each branch while preserving disjointness of
points-to relationships by refining the points-to graph of one branch with a fresh
boolean variable b and refining the points-to graph of the other branch with its
negation ¬b.

Calls

The inference rule for call statements is

ProcSummary(Q) = (γQ
entry, γ

Q
exit)

ΓP ` callk Q;Apply(ΓP , γQ
exit)

The function Apply ∈ G2 → G computes the resulting points-to graph after applying
the exit summary the callee at a call site k. Define a new domain called Location⊥
that adds a special location called ⊥ to Location:

Location⊥ = Location ∪ {⊥}

Define a new domain G⊥ that adds the special location called ⊥ to points-to graphs:

G⊥ = (Location× Location⊥) → Guard
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Define a function Extend⊥ ∈ G → G⊥ that extends a points-to graph with an edge
between every location and ⊥ with a trivial guard:

Extend⊥(γ)(l1, l2) =
{

true l2 = ⊥
γ(l1, l2) l2 6= ⊥

Define a function Effect ∈ G → G⊥ that identifies the condition of points-to edges
in a points-to graph extended with edges to ⊥ and refined by σ:

Effect(γ)(l1, l2) = σ(Extend⊥(γ))(l1, l2)

Define a function Pure ∈ G → Location → Guard that identifies the condition of
a points-to edge pointing to ⊥ in a points-to graph extended with edges to ⊥ and
refined by σ:

Pure(γ)(l) = Effect(γ)(l,⊥)

Finally,
Apply(ΓP , γQ

exit)(l
P
i , l

P
j ) =

[
ΓP (lPi , l

P
j ) ∧ ψ1

]
∨ ψ2 (6.9)

where
ψ1 =

∧
lQm

[
¬Ik(lQm, l

P
i ) ∨ Pure(γQ

exit)(l
Q
m)

]
ψ2 =

∨
lQm,lQn

[
Ik(lQm, l

P
i ) ∧ Ik(lQn , l

P
j ) ∧ Effect(γQ

exit)(l
Q
m, l

Q
n )

]
The formula ψ1 which appears in the first disjunct in equation 6.9 is the condi-

tion under which the points-to edge (lPi , l
P
j ) is preserved across the call site. It is

conjoined with ΓP (lPi , l
P
j ), the guard of the points-to edge (lPi , l

P
j ) of the points-to

graph in which the call statement is executed. The formula ψ1 is a conjunction
of formulas where each conjunct is the condition under which a particular callee
label lQm does not instantiate to lPi , or lQm instantiates to lPi but no side effect to lQm
appears in the exit summary of the callee.

The formula ψ2 which appears as the second disjunct in equation 6.9 is the
condition under which the points-to edge (lPi , l

P
j ) is introduced into caller P as a

side effect by callee Q at call site k. The formula ψ2 is a disjunction of formulas
where each disjunct is a conjunction of the condition that lQm instantiates to lPi and
the condition that lQn instantiates to lPj and the condition of the callee side-effect
(lQm,lQn ).
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Chapter 7

Saturn Tools Reference

7.1 Overview

This chapter describes the various tools included with Saturn, how they interact and
how they can be used to run analyses and view results. The sections are organized
as follows:

• Section 7.2 describes how all syntax trees, summaries, and other intermediate
data and results are stored on disk.

• Section 7.3 describes the various methods for generating syntax trees encoding
the source program to be analyzed.

• Section 7.4 describes how to run the Saturn interpreter over the generated
syntax trees and produce results.

• Section 7.5 describes how to set up and use the Saturn UI for viewing error
reports.

7.2 Data Storage and Management

Almost all on-disk data used by Saturn is stored using BDB databases, which are
simple key-value maps. These have the extension ‘.db’ and can be easily copied
around, deleted, reverted, and so forth. One only has to worry about a handful of
files rather than enormous directories full of data. A few utility apps can be used
to query these databases directly:

• dbkeys file.db : Prints out all keys in the named database.

• dbfind file.db key : Prints out the value for the given key. Most useful for
databases with plaintext values.
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• dbfindc file.db key : Prints out the plaintext contents of the session named
’key’, provided that file.db is used to store session contents. Databases storing
session contents are named according to the corresponding session, e.g. the
contents of all cil body sessions are stored in cil body.db.

Classes of databases generated and used by Saturn are as follows:

7.2.1 Syntax Tree Databases

Databases are used to store the abstract syntax trees generated for the program to be
analyzed (See Section 7.3). For each session name used to store syntax information,
a single database will be generated. With CIL, these have the form:

cil body.db
cil comp.db
cil enum.db
cil glob.db
cil init.db

cil body.db stores all function bodies in the program, cil comp.db stores all
information on composite types, etc. The dbkeys and dbfindc programs can be
used to query these databases.

7.2.2 Process Order Database

The file process.db is generated during syntax tree parsing and stores all process
order information generated for the set of syntax trees. For function bodies, this file
indicates the bottom up ordering of functions over the direct call graph. It may also
be updated by running other analyses, e.g. generating the cil sum body sessions
will add new process order edges.

7.2.3 Preprocessed Files Database

The file ppfile.db is generated during parsing and stores the contents of each
source file after preprocessing. This is used by the UI for toggling between the
original and preprocessed source code. Each value is stored as plaintext, and the
database may be queried with dbkeys and dbfind.

7.2.4 Summary Databases

Running an inter-procedural analysis using the Saturn interpreter will populate a
number of databases with summary information. These databases correspond one-
to-one with the summary session names used by the analysis, e.g. if the analysis
stores information in a summary session sum func, then sum func.db will contain
all such summaries. These databases have the exact same form as syntax tree
session databases (the interpreter makes no distinction between the two) and can
be queried using dbkeys and dbfindc.
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Note that to do a clean restart of a run without regenerating syntax trees, just
delete the summary session databases.

7.2.5 Plaintext Output Databases

Some packages also store output in plaintext output databases separate from sum-
mary sessions. In particular, the UI display package stores display information in
display.db, and search information in search.db. These are consumed directly
by the UI, but can also be queried with dbkeys and dbfind.

7.3 Abstract Syntax Trees

Before using the interpreter to run a program analysis over a program, the source
first needs to be compiled into an Abstract Syntax Tree (AST) representation stored
in a session database. Since the C frontend that we use is the C Intermediate
Language (CIL), we frequently refer to these ASTs as CIL trees.

7.3.1 Compiling Individual Source Files

To compile a single source file, use the cilcc command. cilcc is a program that
takes preprocessed source files and compiles them into CIL trees. Since cilcc
expects preprocessed source files as input, you will usually have to run your source
file through the C preprocessor before passing it to cilcc. For example, consider
the traditional “Hello world” program hello.c:

#include <stdio.h>

int main(void) {
puts("Hello world");
return 0;

}

To build hello.c using cilcc, you need to execute the following commands:

$ gcc -E hello.c -o hello.i
$ cilcc hello.i

The first command executes the GCC preprocessor to expand out the #include
preprocessor directive, producing preprocessed source hello.i, and the second com-
mand invokes cilcc on the preprocessed source to produce the following session
database files:

cil_body.db
cil_comp.db
cil_enum.db
cil_glob.db
cil_init.db
process.db
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Some files may be missing; if the original source file has no static initializers,
cil init.db will be missing, and if the original source has no composite type or
enum definitions, cil comp.db or cil enum.db will be missing, and so forth.

7.3.2 Compiling Large Systems

Most software systems consist of many source files, and use some sort of automated
build software like make. Saturn provides two methods for obtaining CIL trees
automatically from the build process of a software package.

The first of these is clpamake.pl, which is a script that scrapes through the
output generated by the make process looking for calls to GCC. For each such call,
it executes the corresponding command to build CIL trees from the given source
files. In general this approach is unreliable since most codebases will produce more
than one executable, and the clpamake.pl script will simply collapse all the source
files from all of the binaries together. However it does have the advantage of being
reasonably simple, portable and transparent.

The second is an adaption of the Berkeley build interceptor, which instruments
the build process of an application, intercepting calls to the C compiler and linker
and embedding information in the object files in order so it can reliably reconstruct
the preprocessed source files that were compiled to produce a given object file. The
main disadvantage is it is less portable since it relys on dynamic linker tricks and
monkeying with the internals of GCC. It is only tested on Linux.

7.3.3 Using the Build Interceptor

Before using the build interceptor, it needs to be customized for the layout of the
compiler binaries on your system. The configuration file is build-intercept/interceptor.config
in the CLPA source tree.

Firstly, the paths section needs to be filled in with three values, each of which
must be an absolute path:

• intercept scripts should be the build-intercept/ subdirectory of your CLPA
source tree.

• intercept library should be the location of libintercept.so in the same
directory.

• intercept home can be anywhere where the interceptor can store temporary
files from the clpa-intercept script for use by the clpa-make script. Since
a lot of I/O is performed in this directory it should be on a local disk with a
lot of space available.

In the [Redirections] section, you need to provide the location of the compiler
binaries on your system. Examples are given for the compiler in Fedora Core 4, but
you will probably need to add additional entries. In particular the location of cc1 C
compiler backend differs greatly between compiler versions and linux distributions.
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The system provides two commands clpa-intercept, which intercepts a build
process to add source file information to the object files produced by the build
process, and clpa-extract, which takes one or more object files produced by a
build process instrumented with clpa-intercept, extracts exactly those source
files which were used in producing a given object file, and builds CIL trees from
those source files.

To build openssh, for example:

$ tar zxvf openssh-*.tar.gz
$ cd openssh
$ ./configure
$ clpa-intercept make
$ mkdir ../ssh-trees
$ clpa-extract ../ssh-trees sshd

which creates shiny new CLPA trees corresponding to the ssh daemon (sshd) in
../ssh-trees.

Note that you must specify the compiled binaries that you want to analyze. If
there are multiple programs produced by your source package just pick the main
one. Only the source files that went into producing the specified binaries will be
included in the CIL trees.

NB. The C frontend does not handle symbol disambiguation in a particularly
sophisticated way, so it is strongly recommended for correctness that you do not
attempt to combine multiple binaries into the same set of CIL trees.

Building Linux with the Build Interceptor

To build CIL trees for Linux 2.6 together with all drivers (large):

$ make allyesconfig
$ make menuconfig

Go to the ”Loadable module support” item, and turn off ”Enable loadable mod-
ule support”. This ensures that all of the drivers get linked together statically rather
than built as separate modules. Quit menuconfig, saving the configuration.

$ clpa-intercept make vmlinux

Wait a couple of hours, and eventually a binary called vmlinux will be produced
in the top level directory.

$ mkdir ../my-trees
$ clpa-extract ../my-trees vmlinux >\& extract.log

After about 12 hours some shiny new trees will be in ../my-trees. You can follow
the progress of the build using ”tail -f extract.log”, including any errors that turn
up. The files are built in alphabetical order so you should have a rough idea of the
progress of the build. Unfortunately the cilcc compiler is quite slow.
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7.4 Calypso Interpreter

Once abstract syntax tree databases have been generated for the program of interest,
the Calypso interpreter CLPA can be used to run a Calypso analysis over those
databases. The simplest way to use CLPA is to cd to the directory containing the
syntax tree databases, and enter:

clpa /path/to/analysis.clp

The following sections describe the main aspects of the interpreter and how they
can be tuned via command line arguments.

7.4.1 Intra-procedural Analysis

Within each function or other session that is being analyzed, CLPA simply continually
executes rules from the analysis until there are no more rules to execute. The
analysis rules use as input the syntax predicates in the currently analyzed function,
as well as any other syntax sessions or summary sessions of other functions, and
produce as output new predicates to add to summary sessions (as well as plaintext
output to the screen and package output to other databases on disk).

The main way to control the interpreter’s behavior is to set a timeout. By using
the command line argument --timeout N, after N seconds of running the interpreter
on any given function it will stop, print to the screen any output generated so far
(as well as an error message), discard any modifications to sessions performed so
far, and move onto the next function.

7.4.2 Inter-procedural Analysis

Across the entire source program being analyzed by CLPA will analyze each function
in turn, going in bottom-up order by default or top-down if specified within the
analysis. It may also have to fixpoint over functions, reanalyzing the same function
potentially many times, as summary sessions change. For example, if “foo” makes
a direct call to “bar” in the source program, then the analysis of cil body("foo")
may depend on the summary for “bar”, say sum func("bar"). If “foo” is analyzed
and sum func("bar") later changes, then the behavior of the analysis in “foo” may
be affected and “foo” must be reanalyzed.

These dependencies between analysis sessions and summary sessions are discov-
ered on the fly as CLPA runs, and all necessary reanalysis and fixpointing will be per-
formed by default. This behavior can, however, be turned off via the --no-fixpoint
command line argument to CLPA, which restricts each function such that it is only
analyzed once, in a single pass through the code.

7.4.3 Cluster-based Distributed Runs

For analyzing extremely large code bases, or even for much faster analysis of merely
large ones, clpa command can be run in a distributed mode on a cluster of com-
puters. The main clpa process acts as a server, managing the function analysis
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worklist, reads and writes to databases, and printing any per-function output to
the screen. Multiple workers are then spawned, each of which opens a connection
with the server, receive and process functions to be analyzed, then send any output
back to the server. Workers are stateless and do not write anything to their local
disk.

Performance speedup can vary greatly depending on the worker CPU/RAM and
network speed/latency. Our own runs on a 50 core cluster with a switched Gigabit
network typically yield a 40-45x speedup over a single core, though ad-hoc clusters
of computers with low-latency connections between them should also perform well.

The simplest way to start a distributed run is to run clpa with all the ar-
guments that would normally be used in the single threaded mode, but add the
--use-workers command line argument as well:

clpa --use-workers other-clpa-args

Rather than running the analysis itself, this tells clpa to act as a server, and it will
print the address:port it is listening on for workers to connect. A worker process
can be spawned as clpa-worker address port, which will immediately connect to
the given server address and start analyzing functions. The clpa-worker processes
can be started up manually or via a script on different machines, or can be spawned
via cluster submission utilities.

Starting up workers this way on a cluster can be problematic if the cluster is busy
and other users need time; the clpa-worker process will by default run until the
entire fixpointing analysis has finished, and will not timeout or share the resources
in any way. This can be fixed by adding the --spawn-workers and --spawn-cmd
command line arguments to clpa:

clpa --use-workers --spawn-workers NUM --spawn-cmd CMD other-clpa-args

When these arguments are set, the server itself is responsible for spawning work-
ers via the CMD command. This command should take two arguments for the
address and port, and spawn a clpa-worker with those arguments (for exam-
ple, for the SUN gridengine the CMD might be "qsub -b y -N analysis-name
/path/to/clpa-worker"). In addition, each worker will exit after 10-20 minutes
regardless of whether the main interprocedural analysis has finished yet; the server
will continually respawn workers to make sure there are always NUM workers either
actively analyzing functions, or waiting in the cluster queue system for a node to
run on.

7.4.4 Checkpointing

For very long single threaded or distributed runs, being able to checkpoint clpa’s
progress can be useful. If clpa is killed using the SIGINT signal then it will clean
up its state before exiting, but if it is killed any other way then the databases may
be left in a corrupt state.

Adding the clpa comand line argument --checkpoint N causes a checkpoint to
be created after analyzing every N functions. Only the latest checkpoint is stored,
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and it is placed by default in the checkpt directory (this can be changed with the
--checkpoint-dir DIR argument). This directory will contain copies of all the
summary databases at the checkpoint, as well as a dump of the current worklist
state in file work.chk. If the plug gets pulled or another unfortunate event kills
clpa later, delete all the (probably corrupt) summary databases and rerun clpa
with the --checkpoint-resume argument, and it will copy in the checkpointed
summaries and worklist state and resume where it left off.

7.4.5 Controlling Output

There are various options for controlling the level of output produced by clpa.

Quiet

Adding the --quiet argument to clpa suppresses printing of functions analyzed,
timing and allocation info, and everything else except the actual analysis output.
This is most useful when writing regression scripts, as a plain sorted diff of the
output against expected will suffice if --quiet is on.

Print level

The --print-level n option allows you to specify a limit on the depth of subterms
that should be printed when converting a term to a string. Terms below the specified
depth will be printed as “...”. The default depth limit is 15 terms. To disable depth
limiting, pass a depth limit parameter of −1.

Statistics

A variety of statistics flags can be turned on via the --stats flag argument to
clpa. These cover both single function information (SAT queries performed, etc.)
as well as whole run information (functions analyzed, memory usage, etc.). The full
list of possible stats flags with descriptions is given by the --list-stats argument
to clpa.

Debugging

A variety of debugging flags can also be turned on via the --debug flag argument
to clpa. The easiest way to debug analyses is via inserting print() adds in the
relevant places, but some of the debug flags can also be useful. The full list of
possible debug flags with descriptions is given by the --list-debug argument to
clpa.

7.5 User Interface

The Saturn user interface is a web-based viewer for the error reports and other
summary information generated by Saturn analyses. The UI structure is such that
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each analysis may generate a set of displays, which specify a section of the source
C program to display and directions for highlighting particular lines and adding
additional text. Each display describes a single property the analysis has discovered
for a single function. Displays have unique names, so that interprocedural analyses
can construct links between their various displays which can be browsed by the user
either as either statically or dynamically generated HTML pages.

Individual Saturn analyses can generate output either as UI displays via the
display package (Section 8.13), plaintext (queries, etc.), or (usually) both. The
display package generates a display database ‘display.db’ and search database
‘search.db’.

Section 7.5.2 describes how to use the UI to convert the above databases into
a set of static HTML pages. This does not require a web server, but for large sets
of displays (in the 10,000s or 100,000s) the amount of time taken to generate the
HTML becomes very long and the size of the resulting HTML becomes very large
in comparison to the original display database.

Section 7.5.3 describes how to set up the UI on a web server to generate HTML
dynamically. This requires little disk space per run besides the display database
itself, and also allows the user to search the displays generated by multiple analyses
for particular functions.

7.5.1 Configuration Files

The static and dynamic UI both use configuration files to specify where the relevant
files and directories they require for each display database are. These files have the
extension ‘.conf’, and consist of several lines of key-value pairs with whitespace
between the key and value. The possible keys and meaning of the associated values
are as follows:

• display: Specifies the display database ‘display.db’ containing all displays
which were produced by the Saturn analysis.

• srcpath: Specifies the root directory of the C source tree the CIL databases
were generated from for the Saturn analysis. The individual displays contain
file offsets into this directory which the UI will use when generating the HTML.

• ppfile: Optional location of the ‘ppfile.db’ generated by the frontend. This
file contains preprocessed versions of the various source files under srcpath,
and if specified in the configuration then in the resulting displays the user
will be able to toggle the various source code lines between the original and
preprocessed versions.

• style: Specifies the file or URL location of the CSS style sheet to use with
the HTML. Most analyses have a style sheet associated with them that is an
extension of ‘ui/www/styles/default.css’.

• binpath: Specifies the directory containing the dbkeys and dbfind to use,
generally the ‘bin’ output directory of the Saturn make process.
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• search: Used only by the dynamic UI, specifies the search database ‘search.db’
containing display search terms.

• name: Used only by the dynamic UI, specifies a name to print for this analysis
when the user is doing a search.

7.5.2 Static UI

The UI script ‘ui/scripts/static.pl’ generates a complete, inter-linked directory of
static HTML files and associated table of contents for a single display database.
‘static.pl’ is invoked as follows:

static.pl file.conf [category]

The configuration file is required and specifies the location of the configuration
file to use for finding and rendering the displays. The category is optional and if
specified restricts the generated table of contents to only those displays with that
category (See Section 8.13).

After running, a new subdirectory will be created in the current directory with
the same name as the display database. This directory contains file ‘index.html’
with a table of contents for all the displays, and separate HTML files for each
display. Open the ‘index.html’ file in the output directory to view and browse the
displays.

7.5.3 Dynamic UI

To set up the UI to generate HTML dynamically, perform the following steps:

1. Place the ‘search.pl’ and ‘report.pl’ files and all Perl modules from the ‘ui/scripts’
directory into a directory in which CGI script execution is enabled. For in-
formation about setting up mod perl, see http://perl.apache.org.

2. Create a ‘configs’ subdirectory in the directory from step 1.

3. Within the ‘configs’ subdirectory, create one or more configuration files de-
scribing the different display databases you want to be accessible from the
web interface.

The dynamic UI can then be used in two ways. First, the various display
databases can be searched by opening the URL of the ‘search.pl’ script via a web
browser. This will provide a drop-down list of the various databases and a search
box. The only terms that searching will work for are those that were added to the
search database when the analysis ran (See Section 8.13).

Second, new tables of contents can be generated statically which link to various
displays within the dynamic UI. Invoke the ‘ui/scripts/dyntoc.pl’ as follows:

dyntoc.pl file.conf reportURL [category]
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The configuration file is required and must be within the ‘configs’ subdirectory setup
earlier. The reportURL is also required and must point to the ‘report.pl’ file on
the server; this will be used for display links in the table of contents. The category
is optional and if specified restricts the generated table of contents to only those
displays with that category.

After running a single file ‘index.html’ will be produced in the current directory.
This can be moved or renamed as desired, and then opened up in a web browser to
view and browse the displays.
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Chapter 8

Saturn Packages Reference

8.1 Overview

Packages provide interfaces for Calypso programs to interact with external routines
written in other languages such as OCaml and C. These routines may, for exam-
ple, provide parsing information for the source code being analyzed, or perform
constraint based analyses.

Each package defines a set of symbols for inclusion in logic programs. Programs
may access the contents of a package via the ‘using’ directive. The following types
of symbols may be included in a package:

• Type definitions. These are regular type definitions which can be used in
package as well as user-defined predicates. Package types are either composite
sumtypes or are left abstract.

• Add predicates. These are predicate definitions that can only be used in add
operations. Whenever they are added they commit information to the package
via an internal handler.

• Find predicates. These are predicate definitions that can only be used in find
operations. Whenever a query is made for them information is extracted from
the package via an internal handler. Find predicates can have more than one
mode.

• Collection predicates. These are predicate definitions that can only be used
in the right side of collection operations (any non-add predicate may be used
in the left side). An internal handler in the package specifies how to combine
the set of facts being quantified over.

• Predicate definitions. These are regular predicates which can be used in any
operation, and have no special handlers in the package.

• Session definitions. These are regular session functions which can be used as
with user-defined session functions.

97
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The remainder of this section lists and describes all symbols included in the
available packages.

8.2 Builtin

Package builtin is used by default. The builtin predicates define generally useful
routines for writing logic programs.

• notequal(in V0:T,in V1:T) Find

notequal holds if V0 and V1 (which must be the same type) are different ground
values.

• lessthan(in V0:T,in V1:T) Find

lessthan holds if V0 is less than V1 (which must be the same type), under a total
ordering dependent on the types of V0 and V1.

• tostring(in V:T,out S:string) Find

Binds S to the string representation of V.

• toint(in V:T,out N:int) Find

If V has an integer representation, binds N to that representation. Will succeed
if V is an integer, float, or integer string. If V is a floating point value, N will be
truncated.

• tofloat(in V:T,out N:float) Find

If V has a floating point representation, binds N to that representation. Will succeed
if V is an integer, float, or floating point string.

• print(...) Add

Adding print prints the string representation of its arguments (of which there may
be any number) to the screen.

• warning(STR:string,...) Add

Adding warning(STR,...) prints a warning STR along with any extra arguments
(of which there may be any number).
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• profile(...) Add

The number of times profile is added with a particular set of arguments is counted
up by the system. After the current session finishes executing (including normal
termination as well as premature timeouts), this total will be printed for every
distinct set of arguments.

• list mem(in L:list[T],out V:T) Find

Binds V to any member of the list L.

• list length(in L:list[T],out N:int) Find

Binds N to the length of list L.

• list sort(in L:list[T],out V:list[T]) Find

Binds V to the sorted list (according to the ordering given by lessthan()) contain-
ing all elements of L.

• list nodup(in L:list[T]) Find

Predicate that holds if list L is free of duplicates.

• list append(in L0:list[T],in L1:list[T],out V:list[T]) Find

Binds V to the result of appending list L1 to the end of L0.

• list reverse(in L:list[T],out V:list[T]) Find

Binds V to the reverse of list L.

• list all(in V:T,out L:list[T]) Collection

Used in collection operations to extract the V value of all facts matching a query
into a list L. For example, the collection operation \/pair(0,V):list all(V,L)
binds L to a list containing each value V that the constant 0 is paired with.

The lists bound by list all will be sorted, but may contain duplicate entries
if multiple facts unify with V to the same value. Note that if additional facts are
later added that also match the query, an error message will be generated.

• t pair[T0,T1] ::= pair{V0:T0,V1:T1} Type

A pair of two values of any type.
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• bool ::= true | false Type

A simple two-valued type for boolean constants.

• maybe[T] ::= yes{T} | no Type

A polymorphic type representing an optional value. Similar to the option type in
the ML family of languages.

8.3 Integer Operations

Package intops provides numerous operations on integers. These operations do not
introduce constraints, and as such all arguments must be bound to constant integers,
excepting the result NR if present.

• int neg(in N:int,out NR:int) Find

Binds NR to -N.

• int add(in N0:int,in N1:int,out NR:int) Find

Binds NR to N0 + N1.

• int sub(in N0:int,in N1:int,out NR:int) Find

Binds NR to N0 - N1.

• int mul(in N0:int,in N1:int,out NR:int) Find

Binds NR to N0 * N1.

• int div(in N0:int,in N1:int,out NR:int) Find

Binds NR to N0 / N1.

• int mod(in N0:int,in N1:int,out NR:int) Find

Binds NR to N0 % N1.

• int max(in N0:int,in N1:int,out NR:int) Find

Binds NR to the larger of N0 and N1.

• int min(in N0:int,in N1:int,out NR:int) Find

Binds NR to the smaller of N0 and N1.
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• int band(in N0:int,in N1:int,out NR:int) Find

Binds NR to the bitwise-and of N0 and N1.

• int bor(in N0:int,in N1:int,out NR:int) Find

Binds NR to the bitwise-or of N0 and N1.

• int bxor(in N0:int,in N1:int,out NR:int) Find

Binds NR to the bitwise-xor of N0 and N1.

• int eq(in N0:int,in N1:int) Find

Holds when N0 == N1.

• int ne(in N0:int,in N1:int) Find

Holds when N0 != N1.

• int lt(in N0:int,in N1:int) Find

Holds when N0 < N1.

• int gt(in N0:int,in N1:int) Find

Holds when N0 > N1.

• int le(in N0:int,in N1:int) Find

Holds when N0 <= N1.

• int ge(in N0:int,in N1:int) Find

Holds when N0 >= N1.

• int min all(in N:int,out Min:int) Collection

Compute the minimum of a set of integers given by collection over N. Fails if the
collection is empty.

• int max all(in N:int,out Max:int) Collection

Compute the maximum of a set of integers given by collection over N. Fails if the
collection is empty.
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8.4 String Operations

Package strops provides numerous operations on strings. These operations do not
introduce constraints, and as such all arguments where noted must be bound to
constant values.

• str len(in S:string,out LENR:int) Find

Binds LENR to the length of constant string S.

• str cat(in S0:string,in S1:string,out SR:string)

str cat(in S0:string,out S1:string,in SR:string)

str cat(out S0:string,in S1:string,in SR:string) Find

Binds SR to the concatenation of constant strings S0 and S1. Alternatively, if SR
and at least one of S0 and S1 is constant, binds the remaining values as appropriate.

• str sub(in S:string,in POS:int,in LEN:int,out SR:string)

str sub(in S:string,out POS:int,out LEN:int,in SR:string) Find

Binds SR to the substring of constant string S denoted by constant integers POS and
LEN. Alternatively, if SR is a constant string, binds POS and LEN according to any/all
occurrences of SR within S.

8.5 Map ADT

Package map provides an implementation of the map abstract data type.

• map[Key,Value] Type

Maps are an abstract type with key and value type parameters.

• map empty(out M:map[K,V]) Find

Binds M to an empty map.

• map insert(in Key:K, in Value:V, in M0:map[K,V],

out M1:map[K,V]) Find

Insert a mapping from Key to Value into map M0 to produce a new map M1. Any
existing mapping for Key is overwritten.
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• map search(in M:map[K,V], out Key:K, out Value:V) Find

Search for Key in map M, returning the corresponding value Value on success. If
Key is unbound, then all key-value mappings in the map will be returned.

• map remove(in Key:K, in M0:map[K,V], out M1:map[K,V]) Find

Remove any mapping for Key from map M0 to produce a new map M1. If Key is not
present in M0 then the map is unchanged.

• map to sorted list(in M:map[K,V], out L:list[t pair[K,V]]) Find

Convert a map M to a list of key-value pairs L, sorted by key.

• map of list(in L:list[t pair[K,V]], out M:map[K,V]) Find

Convert an unordered list of key-value pairs L to a map. If duplicate keys are
present in the list, the last key-value mapping will be used.

• map all(in Key:K, in Value:V, out M:map[K,V]) Collection

Collect all key-value pairs matching a query into a map.

8.6 Set ADT

Package set provides an implementation of the set abstract data type.

• set[Value] Type

Saps are an abstract type with key and value type parameters.

• set empty(out S:set[V]) Find

Binds S to an empty set.

• set singleton(in Value:V, out S:set[V]) Find

Create a singleton set S containing Value.

• set insert(in Value:V, in S0:set[V], out S1:set[V]) Find

Insert an element Value into set S0 to produce a new set S1.
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• set member(in S:set[V], out Value:V) Find

Test whether element V is present in set S. If V is unbound, then the predicate will
succeed once with each element of the set bound to V.

• set remove(in Value:V, in S0:set[V], out S1:set[V]) Find

Remove element V from set S0 to produce a new set S1. If V is not present in S0
then the set is unchanged.

• set union(in S0:set[V], in S1:set[V], out S2:set[V]) Find

Set S2 to the union of S0 and S1.

• set intersect(in S0:set[V], in S1:set[V], out S2:set[V]) Find

Set S2 to the intersection of S0 and S1.

• set difference(in S0:set[V], in S1:set[V], out S2:set[V]) Find

Set S2 to the set difference of S0 and S1.

• set to sorted list(in S:set[V], out L:list[V]) Find

Convert a set S to a list of values L, sorted by key.

• set of list(in L:list[V], out S:set[V]) Find

Convert an unordered list of values L to a set S. Duplicate elements are ignored.

• set all(in V:V, out S:set[V]) Collection

Collect all values matching a query together into a set. Equivalent to calling
list all followed by set of list.

8.7 Boolean Formula Construction

Package biteval is used by default. Biteval provides support for constructing and
combining boolean formulas, principally through #id g, #and, #or, and #not. Boolean
formulas are an abstract type polymorphic in the values of the leaf variables. Pack-
age solve sat may be used to solve boolean formulas where the leaves are left as
uninterpreted boolean variables, while package solve mip may be used to construct
and solve formulas where the leaves are linear formulas over integer and floating
point variables.
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• bval[T] Type

The abstract type of boolean formulas. Each leaf V in the formula representing a
boolean variable has type T.

• #bool g(in B:bool,out GR:bval[T]) Find

Binds GR to the constant formula (of any leaf type) equal to the boolean B.

• #id g(in V:T,out GR:bval[T]) Find

Binds GR to the formula for the unconstrained boolean variable represented by V. If
the same V is used multiple times, the same formula will result.

• #not(in G:bval[T],out GR:bval[T]) Find

Binds GR to the negation of G.

• #and(in G0:bval[T],in G1:bval[T],out GR:bval[T]) Find

Binds GR to the conjunction of G0 and G1.

• #or(in G0:bval[T],in G1:bval[T],out GR:bval[T]) Find

Binds GR to the disjunction of G0 and G1.

• #and all(in G:bval[T],out GR:bval[T]) Collection

Used in collection operations to compute the conjunction GR over the set of formulas
G as indicated by the results of the query used for the collection. The principal
difference between using #and all for collection rather than list all is that for
list all the query is performed immediately to yield the resulting list, whereas
for #and all the query is delayed until the exact value of the formula is needed for
a SAT query. As long as SAT queries are delayed until after all formulas have been
computed, none will have their results invalidated (with resulting error messages)
by newly introduced formulas.

• #or all(in G:bval[T],out GR:bval[T]) Collection

Used in collection operations to compute the disjunction GR over the set of formu-
las G as indicated by the results of the query used for the collection. The same
considerations as with #and all apply for #or all.

• #g id(in G:bval[T],out VR:T) Find

Binds VR to a leaf in the formula G. Separate predicates will be instantiated for each
leaf in G.
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• #g size(in G:bval[T],out N:int) Find

Binds N to the number of distinct non-constant sub-formulas of G.

• #simplify(in G:bval[T],out GR:bval[T]) Find

Simplifies G, resolving all collection operations and applying as much constant fold-
ing and other simplification as possible according to a simplification level L on each
sub-formula of G, binding GR to that simplified representation. Simplification levels
are provided for each new formula’s construction; #not, #and, and #or each use level
100, the maximum. Other packages that construct formulas may use smaller levels
that perform fewer simplifications (but lead to an overall faster running time). Note
that simplification is performed by all SAT queries, as well as other operations such
as adding to a summary. This predicate is only necessary to get a (fairly) canonical
representation of a formula to allow cheap and accurate formula comparison and
indexing.

• #not lv(in G:bval[T],in L:int,out GR:bval[T])

#not lv(out G:bval[T],out L:int,in GR:bval[T]) Find

Variant on #not that makes the simplification level L used explicit. May be used
with two modes, either to construct a negation formula with the desired simplifica-
tion level, or to break GR down into G and L, provided that GR is itself a negation
formula.

• #and lv(in G0:bval[T],in G1:bval[T],in L:int,out GR:bval[T])

#and lv(out G0:bval[T],out G1:bval[T],out L:int,

in GR:bval[T]) Find

Variant on #and that makes the simplification level L used explicit. May be used
with two modes, either to construct a conjunction formula with the desired simpli-
fication level, or to break GR down into G0, G1 and L, provided that GR is itself a
conjunction.

• #or lv(in G0:bval[T],in G1:bval[T],in L:int,out GR:bval[T])

#or lv(out G0:bval[T],out G1:bval[T],out L:int,

in GR:bval[T]) Find

Variant on #or that makes the simplification level L used explicit. May be used with
two modes, either to construct a disjunction formula with the desired simplification
level, or to break GR down into G0, G1 and L, provided that GR is itself a disjunction.



8.8. BOOLEAN CONSTRAINT SOLVING 107

8.8 Boolean Constraint Solving

Package solve sat provides an interface with the SAT solvers MiniSAT and zChaff
for solving boolean formulas over unconstrained variables. These formulas are cre-
ated using the predicates from package biteval, which is used by default.

• #sat(in G:bval[T]) Find

Holds if G is satisfiable.

• bval asn[T] Type

The type of a satisfying assignment for a boolean formula over unconstrained vari-
ables of type T.

• #satasn(in G:bval[T],out ASN:bval asn[T]) Find

Holds if G is satisfiable, and binds ASN to a satisfying assignment of booleans to
each boolean variable in G.

• #asng(in ASN:bval asn[T],in G:bval[T]) Find

Holds if G is true under boolean assignment ASN. Variables in G not used in the
formula tested to construct ASN are treated as false.

8.9 Bitvector Operations

Package solve bitvector provides numerous predicates for constructing and ma-
nipulating vectors of boolean formulas, which may then be solved using the predi-
cates in package solve sat. Bit vectors are an abstract type over the type of values
used to construct unconstrained vectors, as well as an additional type which may
be used to insert individual unconstrained variables into formulas.

• bvec[T,U] Type

The type of a bitvector. Each bitvector is a signed or unsigned vector of boolean
formulas, each of which has leaf formulas constructed either from unconstrained
vector IDs of type T, or from individual unconstrained bits of type U. The format
of these leaves is given by bvecbit[T,U] below.

• bvecbit[T,U] ::= b vbit{V:T,N:int} | b abit{V:U} Type

The type of a leaf boolean variable in a formula used in bitvectors. Leaf variables
b vbit{V,N} indicate bit position N of the ID V, while variables b abit{V} indicate
individual unconstrained variables unique to V.
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• #id bv(in V:T,in S:bool,in O:bool,in LEN:int,

out BVR:bvec[T,U]) Find

Binds BVR to a vector of unconstrained boolean variables unique to V. The sign and
length of the vector are indicated by S and LEN respectively. If O is true, then the
overflow bit of the vector is an unconstrained boolean variable, whereas if O is false
then the overflow bit is a constant 0 bit. If the same V is used multiple times, the
same bit vector will be bound.

• #int bv(in N:int,in S:bool,in LEN:len,

out BVR:bvec[T,U]) Find

Binds BVR to a bit vector of sign/length S/LEN representing the constant N.

• #g bv(in G:bval[bvecbit[T,U]],in S:bool,in LEN:int,

out BVR:bvec[T,U]) Find

Binds BVR to a bit vector of sign/length S/LEN whose first bit is G.

• #bv cast(in BV:bvec[T,U],in S:bool,in LEN:int,

out BVR:bvec[T,U]) Find

Binds BVR to a bit vector cast from BV, changing the signed/unsigned flag S and
vector length LEN.

• #bv int(in BV:bvec[T,U],out NR:int) Find

Binds NR to an integer representation of BV, provided that BV is a constant vector.

• #bv neg(in BV:bvec[T,U],out BVR:bvec[T,U]) Find

Binds BVR to -BV.

• #bv bnot(in BV:bvec[T,U],out BVR:bvec[T,U]) Find

Binds BVR to ~BV.

• #bv add(in BV0:bvec[T,U],in BV1:bvec[T,U],

out BVR:bvec[T,U]) Find

Binds BVR to BV0 + BV1.

• #bv sub(in BV0:bvec[T,U],in BV1:bvec[T,U],

out BVR:bvec[T,U]) Find

Binds BVR to BV0 - BV1.
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• #bv band(in BV0:bvec[T,U],in BV1:bvec[T,U],

out BVR:bvec[T,U]) Find

Binds BVR to BV0 & BV1.

• #bv bor(in BV0:bvec[T,U],in BV1:bvec[T,U],

out BVR:bvec[T,U]) Find

Binds BVR to BV0 | BV1.

• #bv bxor(in BV0:bvec[T,U],in BV1:bvec[T,U],

out BVR:bvec[T,U]) Find

Binds BVR to BV0 ^ BV1.

• #bv mul(in BV:bvec[T,U],in N:int,out BVR:bvec[T,U]) Find

Binds BVR to BV * N, where N is a constant integer.

• #bv shl(in BV:bvec[T,U],in N:int,out BVR:bvec[T,U]) Find

Binds BVR to BV << N, where N is a constant integer.

• #bv shr(in BV:bvec[T,U],in N:int,out BVR:bvec[T,U]) Find

Binds BVR to BV >> N, where N is a constant integer.

• #bv eqz(in BV:bvec[T,U],out GR:bval[bvecbit[T,U]]) Find

Binds GR to a formula holding if BV is zero.

• #bv nez(in BV:bvec[T,U],out GR:bval[bvecbit[T,U]]) Find

Binds GR to a formula holding if BV is non-zero.

• #bv eq(in BV0:bvec[T,U],in BV1:bvec[T,U],

out GR:bval[bvecbit[T,U]]) Find

Binds GR to a formula holding if BV0 == BV1.

• #bv ne(in BV0:bvec[T,U],in BV1:bvec[T,U],

out GR:bval[bvecbit[T,U]]) Find

Binds GR to a formula holding if BV0 != BV1.
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• #bv lt(in BV0:bvec[T,U],in BV1:bvec[T,U],

out GR:bval[bvecbit[T,U]]) Find

Binds GR to a formula holding if BV0 < BV1.

• #bv gt(in BV0:bvec[T,U],in BV1:bvec[T,U],

out GR:bval[bvecbit[T,U]]) Find

Binds GR to a formula holding if BV0 > BV1.

• #bv le(in BV0:bvec[T,U],in BV1:bvec[T,U],

out GR:bval[bvecbit[T,U]]) Find

Binds GR to a formula holding if BV0 <= BV1.

• #bv ge(in BV0:bvec[T,U],in BV1:bvec[T,U],

out GR:bval[bvecbit[T,U]]) Find

Binds GR to a formula holding if BV0 >= BV1.

• #asnbv(in ASN:bval asn[bvecbit[T,U]],

in BV:bvec[T,U],out NR:int) Find

Binds NR to the value of BV under boolean assignment ASN.

• #bv bit(in BV:bvec[T,U],in N:int,

out GR:bval[bvecbit[T,U]]) Find

Binds GR to the formula in bit position N of BV. Bit positions are ordered from least
to most significant.

• #bv oflow(in BV:bvec[T,U],out GR:bval[bvecbit[T,U]]) Find

Binds GR to the overflow bit for BV, which indicates whether BV represents the result
of an overflowing computation.

• #bv split(in BV:bvec[T,U],

out SR:bool,out OGR:bval[bvecbit[T,U]],

out BITS:list[bval[bvecbit[T,U]]]) Find

Splits BV into its component formulas. SR indicates whether BV is signed, OGR
indicates whether BV is the result of an overflowing computation, and BITS are all
the individual bits in BV, from least to most significant order. If BV is variable,
binds BV to the bitvector specified by the remaining arguments (which must all be
constant).
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• #bv guard(in BV:bvec[T,U],in G:bval[bvecbit[T,U]],

out BVR:bvec[T,U]) Find

Binds GR to the guarded bitvector formed by conjoining each bit of BV with G.

• #bv all(in BV:bvec[T,U],in G:bval[bvecbit[T,U]],

out BVR:bvec[T,U]) Collection

Used in collection operations to compute the disjunction BVR over a series of con-
joined bitvector/guard pairs BV/G. If BV0/G0...BVM/GM are the bitvectors and guards
used in performing the collection, then bit N of BVR is equal to (G0∧BV0[N])∨...∨(GM∧BVM[N]).

8.10 Linear and Integer Constraint Solving

Package solve mip provides an interface with the mixed integer linear program
solver lp solve for solving boolean formulas over linear and integer constraints.

Constraints compare linear formulas over floating point or integer variables
with constant floating point values. Formulas are constructed with #id ipval
and #flt ipval, combined with #ip add, #ip sub, #ip mul, and #ip div, and
formed into constraints with #ip cst. These constraints can be combined using
the predicates in biteval, and optimized or tested for satisfiability with #ip sat,
#ip minimize, and #ip maximize.

As with unconstrained boolean variables and bit vectors, linear formulas and lin-
ear constraints are polymorphic in the type of value used to construct unconstrained
linear variables.

• ipval[T] Type

The type of a linear formula. Each formula is a linear combination of floating point
or integer variables, each of which is constructed from an ID value V of type T.

• ipcst[T,U] Type

The type of a leaf constraint in a boolean formula over linear constraints. Each
leaf is either a linear constraint comparing a formula over values of type T with a
constant value, or is an opaque boolean variable of type U. A boolean formula over
linear constraints has type bval[ipcst[T,U]].

• ipkind ::= ip float | ip int | ip binary Type

The possible kinds of variables used in linear constraints, distinguished by the pos-
sible values they can take.

• ip float: Any floating point value.
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• ip int: Any integer.

• ip binary: Either 0 or 1.

• #id ipval(in V:T,in KIND:ip kind,out IVR:ipval[T]) Find

Binds IVR to a formula containing a single variable with kind KIND. If the same ID
is used multiple times, the same formula will be bound.

• #flt ipval(in N:float,out IVR:ipval[T]) Find

Binds IVR to a constant formula for the specified floating point constant N.

• #ip add(in IV0:ipval[T],in IV1:ipval[T],

out IVR:ipval[T]) Find

Binds IVR to the sum of formulas IV0 and IV1.

• #ip sub(in IV0:ipval[T],in IV1:ipval[T],

out IVR:ipval[T]) Find

Binds IVR to the difference of formulas IV0 and IV1.

• #ip mul(in IV:ipval[T],in N:float,out IVR:ipval[T]) Find

Binds IVR to the result of multiplying IV by the floating point constant N.

• #ip div(in IV:ipval[T],in N:float,out IVR:ipval[T]) Find

Binds IVR to the result of dividing IV by the floating point constant N.

• ipval terms[T] ::= term ax{A:float,V:T,TAIL:ipval terms[T]}
| term z Type

The type of a decomposition of the terms in a linear formula. term ax{A,V,TAIL}
indicates the sum of A*V and the value represented by TAIL. term z indicates an
empty set of terms, zero.

• #ip split(in IV:ipval[T],

out TERMS:ipval terms[T],out B:float) Find

Splits IV into its component terms and constants. TERMS is bound to a decomposi-
tion of all the terms in the formula. B is bound to the fixed constant offset of the
formula.
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• ipcstop ::= ip lt | ip gt | ip le | ip ge

| ip eq | ip ne Type

The possible ways to compare a linear formula with a constant value.

• #ip cst(in IV:ipval[T],in OP:ipcstop,in N:float,

out GR:bval[ipcst[T,U]])

#ip cst(out IV:ipval[T],out OP:ipcstop,out N:float,

in GR:bval[ipcst[T,U]]) Find

Binds GR to a boolean formula which holds when the formula IV bears the relation
given by OP with the constant N. Note that for ip ne, ip lt, and ip gt, the result-
ing constraint will treat IV as if it has an integer value. Specifically, IV != N is
converted to IV <= N-1 | IV >= N+1, IV < N is converted to IV <= N-1, and IV
> N is converted to IV >= N+1.

• #ip bit(in X:U,out GR:bval[ipcst[T,U]])

#ip bit(out X:U,in GR:bval[ipcst[T,U]]) Find

Binds GR to the formula for the opaque boolean variable X.

• #ip sat(in G:bval[ipcst[T,U]] Find

Holds if G is satisfiable.

• #ip minimize(in G:bval[ipcst[T,U]],in IV:ipval[T],

out NR:float) Find

Holds if G is satisfiable, binding NR to the minimum value of IV when G is satisfiable.

• #ip maximize(in G:bval[ipcst[T,U]],in IV:ipval[T],

out NR:float) Find

Holds if G is satisfiable, binding NR to the maximum value of IV when G is satisfiable.

• ipval asn[T,U] Type

The type of a satisfying assignment for a boolean formula over linear constraints
over unconstrained floating point or integer variables of type T and opaque boolean
variables of type U.

• #ip sat asn(in G:bval[ipcst[T,U]],out IASN:ipval asn[T,U]) Find

Holds if G is satisfiable, and binds IASN to a satisfying assignment of values to each
linear variable in G.
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• #ip minimize asn(in G:bval[ipcst[T,U]],in IV:ipval[T],

out NR:float,

out IASN:ipval asn[T,U]) Find

Holds if G is satisfiable, binding NR to the minimum value of IV when G is satisfiable,
and IASN to a satisfying linear variable assignment minimizing IV.

• #ip maximize asn(in G:bval[ipcst[T,U]],in IV:ipval[T],

out NR:float,

out IASN:ipval asn[T,U]) Find

Holds if G is satisfiable, binding NR to the maximum value of IV when G is satisfiable,
and IASN to a satisfying linear variable assignment maximizing IV.

• #ip asn(in IASN:ipval asn[T,U],in IV:ipval[T],

out NR:float) Find

Binds NR to the value of formula IV under linear variable assignment IASN. Variables
in IV not mentioned in the formula used to create IASN are treated as zero.

• #ip asn g(in IASN:ipval asn[T],in G:bval[ipcst[T]]) Find

Holds if G is true under linear variable assignment IASN. Variables in IV not men-
tioned in the formula used to create IASN are treated as zero.

• #ip asn var(in IASN:ipval asn[T,U],out XR:T,out NR:float) Find

Binds XR and NR to any variable-value linear variable pair in assignment IASN. Will
only be generated for variables actually relevant to the test used to generate IASN.

• #ip asn bit(in IASN:ipval asn[T,U],out XR:U,out BR:bool) Find

Binds XR and NR to any variable-value opaque boolean variable pair in assignment
IASN. Will only be generated for boolean variables actually relevant to the test used
to generate IASN.

• #ip asn print(in IASN:ipval asn[T,U],...) Add

Adding will print all relevant variable-value pairs in the specified assignment, pre-
fixed with any extra arguments (of which there may be any number).

• #ip pretty ipval(in IV:ipval[string],

out SR:string) Find

Converts a linear formula over strings IV to a string SR, cleaning up the result as
much as possible.
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• #ip pretty bval(in G:bval[ipcst[string,string]],

out SR:string) Find

Converts a boolean formula over linear constraints over strings G to a string SR,
cleaning up the result as much as possible.

8.11 CIL Translation

The package translatecil encodes the CIL representation of C language constructs
in a format suitable for use in logic programs. This consists of several components:

• Abstract types representing instances of CIL constructs (types, expressions,
etc.). For example, c exp is the type of CIL expressions.

• Factory predicates for constructing new instances of the abstract types. For
example, make cil exp(X,Y,E) gets a c exp E unique to X and Y.

• Enumerated sum-types for certain CIL types that can take on only a finite
set of values. For example, binop is the type of a binary operation.

• Additional syntax predicates for encoding the CIL syntax tree itself. These re-
late instances of the abstract types with each other and with constant strings,
integers, etc. For example, cil exp cast(E:c exp,CE:c exp,T:c type) in-
dicates that E is the result of casting expression CE to type T.

• Session functions for storing the syntax predicates generated during parsing.
A typical C program is far too large to store all syntax in a single session.
Each instance of a session function stores all syntax related to a particular C
symbol. For example, cil func(‘foo’) stores the syntax for function foo’s
body, while cil comp(‘str’) stores the syntax for all fields in composite type
(i.e. struct or union) str.

We go over each of these components in turn and give a brief description of all
defined symbols. For a more comprehensive overview of CIL syntax and what these
values mean, please consult the CIL documentation.

8.11.1 Abstract Types

All the CIL constructs represented by abstract types are given by the following
table. The ‘CIL Type’ column gives the name of the corresponding construct as
defined in cil/src/cil.ml
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Type CIL Type Description
c type typ C language type
c comp compinfo C language composite struct/union
c field fieldinfo Field of a struct/union
c enum enuminfo C language enum
c var varinfo Local or global variable
c init init Static initializer for a global variable
c exp exp C language expression
c const constant C language constant value (5,‘foo’,etc.)
c lval lval C language l-value
c offset offset Series of field/array accesses in an l-value
c fundec fundec Function body definition
c block block Series of C statements
c stmt stmtkind C language statement (if,while,return,etc.)
c instr instr C language instruction (assignment,call)
c attr attribute A C or GCC-extension attribute
c attr arg attrparam An attribute argument
c macro macro A C macro expansion

8.11.2 Factory Predicates

All factory predicates are have the form cil make *(X,Y,V) where X and Y are
values unique to the value V bound by the predicate. If X and Y are the same, then
the same V will always result. All factory predicates are ‘Find’ predicates with the
first two arguments as in and the last as out.

Predicate Description
make cil type(X:XT,Y:YT,V:c type) Make a c type V from X and Y
make cil comp(X:XT,Y:YT,V:c comp) Make a c comp V from X and Y
make cil field(X:XT,Y:YT,V:c field) Make a c field V from X and Y
make cil enum(X:XT,Y:YT,V:c enum) Make a c enum V from X and Y
make cil var(X:XT,Y:YT,V:c var) Make a c var V from X and Y
make cil init(X:XT,Y:YT,V:c init) Make a c init V from X and Y
make cil exp(X:XT,Y:YT,V:c exp) Make a c exp V from X and Y
make cil const(X:XT,Y:YT,V:c const) Make a c const V from X and Y
make cil lval(X:XT,Y:YT,V:c lval) Make a c lval V from X and Y
make cil offset(X:XT,Y:YT,V:c offset) Make a c offset V from X and Y
make cil fundec(X:XT,Y:YT,V:c fundec) Make a c fundec V from X and Y
make cil block(X:XT,Y:YT,V:c block) Make a c block V from X and Y
make cil stmt(X:XT,Y:YT,V:c stmt) Make a c stmt V from X and Y
make cil instr(X:XT,Y:YT,V:c instr) Make a c instr V from X and Y
make cil attr(X:XT,Y:YT,V:c attr) Make a c attr V from X and Y
make cil attr arg(X:XT,Y:YT,V:c attr arg) Make a c attr arg V from X and Y
make cil macro(X:XT,Y:YT,V:c macro) Make a c macro V from X and Y
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8.11.3 Enumerated Types

The following tables give the values and meaning of each enumerated type.

Type ikind corresponds to the CIL ikind representing different types of inte-
gers, and takes on the following values:

Value CIL Value C type
ichar IChar char
ischar ISChar signed char
iuchar IUChar unsigned char
iint IInt int
iuint IUInt unsigned int
ishort IShort short
iushort IUShort unsigned short
ilong ILong long
iulong IULong unsigned long
ilonglong ILongLong long long
iulonglong IULongLong unsigned long long

Type fkind corresponds to the CIL fkind representing different types of floating
point values, and takes on the following values:

Value CIL Value C type
ffloat FFloat float
fdouble FDouble double
flongdouble FLongDouble long double

Type unop corresponds to the CIL unop representing different unary operations,
and takes on the following values:

Value CIL Value Operation
u neg Neg unary minus
u bnot BNot bitwise not
u lnot LNot logical not

Type binop corresponds to the CIL binop representing different binary opera-
tions, and takes on the following values:
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Value CIL Value Operation
b plusa PlusA integer + integer
b pluspi PlusPI pointer + integer
b indexpi IndexPI pointer + integer
b minusa MinusA integer - integer
b minuspi MinusPI pointer - integer
b minuspp MinusPP pointer - pointer
b mult Mult multiplication
b div Div division
b mod Mod modulus
b shiftlt Shiftlt left shift
b shiftrt Shiftrt right shift
b lt Lt less than compare
b gt Gt greater than compare
b le Le less than or equal compare
b ge Ge greater than or equal compare
b eq Eq equal compare
b ne Ne not equal compare
b band BAnd bitwise and
b bxor BXor bitwise exclusive-or
b bor BOr bitwise or
b land LAnd logical and
b lor LOr logical or

8.11.4 Syntax Predicates Overview

Since the syntax predicates mimic the original CIL datatype structure, they prin-
cipally encode parent-child relations We then divide syntax predicates according
to the abstract type of the ‘parent’ that they describe. Note however that these
predicates can be used in any fashion within logic programs, for either adding or
finding, and in the later case with any or all arguments variable (allowing for simple
searching or traversing of the syntax tree).

8.11.5 c type Syntax Predicates

• cil type void(T:c type) : Void type.

• cil type int(T:c type,K:ikind) : Int type with kind K.

• cil type float(T:c type,K:fkind) : Float type with kind K.

• cil type ptr(T:c type,DT:c type) : Pointer type to type DT.

• cil type array(T:c type,ET:c type,E:c exp) : Array type with element
type ET and length E.

• cil type func(T:c type,RT:c type,VARGS:bool) : Function type with re-
turn type RT and VARGS indicating whether the function is varargs.
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• cil type func arg(T:c type,A:int,AS:string,AT:c type) : Single argu-
ment A of a function type, with name AS and type AT.

• cil type func arg attr(T:c type,A:int,ATTR:c attr) : Single function
type argument attribute.

• cil type named(T:c type,NAME:string,NT:c type) : Named alias type NAME
for type NT.

• cil type comp(T:c type,COMP:string) : Type for composite struct/union
named COMP.

• cil type enum(T:c type,ENUM;string) : Type for enum named ENUM.

• cil type valist(T:c type) : Special valist type.

• cil type x attr(T:c type,ATTR:c attr) : Single type attribute.

• cil type x bytes(T:c type,N:int) : Type width is N bytes. Not present
for types that don’t have widths (such as function types).

8.11.6 c comp Syntax Predicates

• cil comp name(C:c comp,NAME:string,STRUCT:bool) : Composite with name
NAME. if STRUCT is true, the type is a struct, while if STRUCT is false, the type
is a union.

• cil comp field(C:c comp,POS:int,F:c field) : Single field F of a compos-
ite, with index into the composite POS.

• cil comp attr(C:c comp,ATTR:c attr) : Single composite attribute.

• cil comp bytes(C:c comp,N:int) : Width of this composite is N bytes.

• cil comp location(C:c comp,FILE:string,LINE:int) : Source file loca-
tion of the beginning (opening ‘struct’) of a composite’s definition.

• cil comp end location(C:c comp,FILE:string,LINE:int) : Source file lo-
cation of the ending (closing ‘}’) of a composite’s definition.

8.11.7 c field Syntax Predicates

• cil field name(F:c field,NAME:string,T:c type,BITS:int,BITW:int) :
Field with name NAME, type T, which starts at bit position BITS into its parent
structure, and has bit width BITW.

• cil field attr(F:c field,ATTR:c attr) : Single field attribute.
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8.11.8 c enum Syntax Predicates

• cil enum name(E:c enum,NAME:string) : Enum with name NAME.

• cil enum item(E:c enum,POS:int,S:string,E:c exp) : Single item S of an
enum, with value given by E.

• cil enum attr(E:c enum,ATTR:c attr) : Single enum attribute.

• cil enum location(C:c enum,FILE:string,LINE:int) : Source file loca-
tion of the beginning (opening ‘enum’) of an enum’s definition.

• cil enum end location(C:c enum,FILE:string,LINE:int) : Source file lo-
cation of the ending (closing ‘}’) of an enum’s definition.

8.11.9 c var Syntax Predicates

• cil var name(X:c var,NAME:string,T:c type) : Variable with name NAME
and type T.

• cil var global(X:c var) : Flag for global variables.

• cil var local(X:c var) : Flag for local variables.

• cil var return(X:c var) : Flag for the function return variable.

• cil var inline(X:c var) : Flag for inline function variables.

• cil var static(X:c var) : Flag for static variables.

• cil var register(X:c var) : Flag for register variables.

• cil var init(X:c var,I:c init) : Static initializer for global variables.

• cil var attr(X:c var,ATTR:c attr) : Single variable attribute.

• cil var location(X:c var,FILE:string,LINE:int) : Source file location
of a variable definition. Only present for global variables.

8.11.10 c init Syntax Predicates

• cil init single(I:c init,E:c exp) : Single initializer with value E.

• cil init cmpnd type(I:c init,T:c type) : Compound initializer, initializ-
ing a composite or array type T.

• cil init cmpnd field(I:c init,F:c field,FI:c init) : Part of a com-
pound initializer, initializing field F with FI.

• cil init cmpnd index(I:c init,E:c exp,EI:c init) : Part of a compound
initializer, initializing index E of an array with EI.
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8.11.11 c exp Syntax Predicates

• cil exp const(E:c exp,C:c const) : Constant expression.

• cil exp lval(E:c exp,LV:c lval) : L-value expression, value is that held
by LV at the point the expression is evaluated.

• cil exp sizeof(E:c exp,ST:c type) : Sizeof a type.

• cil exp sizeofe(E:c exp,SE:c exp) : Sizeof an expression type.

• cil exp sizeofstr(E:c exp,SS:string) : Sizeof a string.

• cil exp alignof(E:c exp,AT:c type) : Alignof a type.

• cil exp alignofe(E:c exp,AE:c exp) : Alignof an expression type.

• cil exp unop(E:c exp,OP:unop,RE:c exp,T:c type) : Unary operation OP
on RE, with result type T.

• cil exp binop(E:c exp,OP:binop,LE:c exp,RE:c exp,T:c type) : Binary
operation OP on LE and RE, with result type T.

• cil exp cast(E:c exp,CE:c exp,T:c type) : Cast expression of CE into
type T.

• cil exp addr(E:c exp,LV:c lval) : Address-of expression, get the address
of LV.

• cil exp start(E:c exp,LV:c lval) : Implicit address-of expression used for
arrays, get the address of LV[0].

• cil exp x intval(E:c exp,N:int) : Expression constant-folds to integer
value N. Not present for expressions that don’t fold to a constant value.

• cil exp x location(E:c exp,FILE:string,BLINE:int,ELINE:int,BBYTE:int,EBYTE:int)
: Source file location of expression E, between lines BLINE ELINE, and file byte
ranges BBYTE and EBYTE. Note that these ranges are for the preprocessed code.

• cil exp x macro(E:c exp,M:c macro) : Expression is contained within macro
expansion M. Only available if the modified macro-generating GCC was used
for compilation.

8.11.12 c const Syntax Predicates

• cil const int(C:c const,K:ikind,N:int) : Integer N with kind K.

• cil const str(C:c const,S:string) : ANSI string S.

• cil const wstr(C:c const,LEN:int) : Wide string with LEN characters.

• cil const char(C:c const,N:int) : Character with value N.

• cil const real(C:c const,K:fkind,N:float) : Float N with kind K.
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8.11.13 c lval Syntax Predicates

• cil lval var(LV:c lval,X:c var,OFF:c offset) : Offset OFF into a local
or global variable X.

• cil lval mem(LV:c lval,ME:c exp,OFF:c offset) : Offset OFF into the tar-
get of a pointer expression ME.

8.11.14 c offset Syntax Predicates

• cil off none(OFF:c offset) : Empty offset.

• cil off field(OFF:c offset,F:c field,NOFF:c offset) : Offset given by
taking offset NOFF of field F of this composite.

• cil off index(OFF:c offset,E:c exp,NOFF:c offset) : Offset given by
taking offset NOFF of index E of this array.

8.11.15 c fundec Syntax Predicates

As every function body is declared in a separate session, there will be at most one
function definition. This allows the special predicate cil curfn to identify this
function’s name.

• cil curfn(FNAME:string) : FNAME is the name of the currently analyzed
function, provided that the current session is indeed a function body.

• cil fundec name(FN:c fundec,NAMEX:c var,BODY:c block) : Function def-
inition with function variable NAMEX and body BODY.

• cil fundec formal(FN:c fundec,A:int,AX:c var) : Single formal parame-
ter A of a function definition, accessed via variable AX.

• cil fundec local(FN:c fundec,X:c var) : Single local variable X of a func-
tion definition.

• cil fundec location(FN:c fundec,FILE:string,LINE:int) : Source file
location of the beginning (function symbol) of a function’s definition.

• cil fundec end location(FN:c fundec,FILE:string,LINE:int) : Source
file location of the ending (closing ‘}’) of a function’s definition.

8.11.16 c block Syntax Predicates

• cil block stmts(B:c block,STMTS:list[c stmt]) : Block for a sequence
of statements STMTS.

• cil block attr(B:c block,ATTR:c attr) : Single block attribute.
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8.11.17 c stmt Syntax Predicates

An extra sum-type cases is used by switch statements to encode a series of case
and default labels.

cases ::= case{E:c exp,S:c stmt}
| default{S:c stmt}

Each cases is a single case in a switch statement, either a test/target pair or
just the target for a default label.

The statement predicates are as follows:

• cil stmt instrs(S:c stmt,INSTS:list[c instr]) : Sequence of individual
instructions.

• cil stmt return(S:c stmt) : Any return statement.

• cil stmt return exp(S:c stmt,E:c exp) : Expression E is returned by the
statement.

• cil stmt goto(S:c stmt,TGT:c stmt) : Goto statement with target TGT.

• cil stmt break(S:c stmt) : Break statement.

• cil stmt continue(S:c stmt) : Continue statement.

• cil stmt if(S:c stmt,E:c exp,TB:c block,FB:c block) : If statement test-
ing E and branching to TB if the result is non-zero, or to FB if the result is
zero.

• cil stmt switch(S:c stmt,E:c exp,B:c block,CASES:list[c cases]) : Switch
statement with body B and individual cases CASES.

• cil stmt loop(S:c stmt,B:c block) : Loop statement executing block B
repeatedly. Any control flow exiting the loop will be given by interior break,
continue, or goto statements.

• cil stmt block(S:c stmt,B:c block) : Nested block of statements.

• cil stmt tryfinally(S:c stmt) : Try-finally statement, MSVC-only and
contents are not currently available.

• cil stmt tryexcept(S:c stmt) : Try-except statement, MSVC-only and
contents are not currently available.

• cil stmt x location(S:c stmt,FILE:string,LINE:int) : Source file loca-
tion of any statement, always present but sometimes with an unknown loca-
tion.
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8.11.18 c instr Syntax Predicates

• cil instr set(I:c instr,LV:c lval,E:c exp) : Assignment instruction, stor-
ing the value of expression E in the location given by LV.

• cil instr call(I:c instr,FNE:c exp) : Call instruction to function ex-
pression FNE.

• cil instr call ret(I:c instr,RLV:c lval) : Return l-value for a call in-
struction which assigns its return value somewhere.

• cil instr call arg(I:c instr,A:int,AE:c exp) : Single argument num-
ber A of a call, with value AE. Arguments are numbered starting from 0.

• cil instr asm(I:c instr,TEMPLATES:list[string]) : Assembly instruc-
tion executing a sequence of individual assembly templates TEMPLATES.

• cil instr asm out(I:c instr,N:int,L:maybe[string],X:string,LV:c lval)
: Output l-value for an assembly instruction. The Nth argument to the as-
sembly instruction is an output which assigns the value of location template
X to LV. Within the assembler code this location may be referred to using the
optional symbolic name L.

• cil instr asm in(I:c instr,N:int,L:maybe[string],X:string,E:c exp)
: Input expression for an assembly instruction. The Nth argument to the as-
sembly instruction is an input which takes the value of E in location template
X. Within the assembler code this location may be referred to using the op-
tional symbolic name L.

• cil instr asm clobber(I:c instr,X:string) : Single register value X clob-
bered by an assembly instruction.

• cil instr asm attr(I:c instr,ATTR:c attr) : Single assembly instruction
attribute (const or volatile).

• cil instr x location(I:c instr,FILE:string,LINE:int) : Source file lo-
cation of any instruction, always present but sometimes with an unknown
location.

8.11.19 c attr Syntax Predicates

• cil attr name(A:c attr,NAME:string) : Attribute with name NAME.

• cil attr arg(A:c attr,P:int,PARG:c attr arg) : Single argument A of an
attribute, with value PARG.
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8.11.20 c attr arg Syntax Predicates

• cil attr arg int(A:c attr arg,N:int) : Constant integer argument.

• cil attr arg str(A:c attr arg,S:string) : Constant string argument.

• cil attr arg cons(A:c attr arg,CONS:c attr) : Constructed argument from
another attribute.

• cil attr arg sizeof(A:c attr arg,ST:c type) : Sizeof type argument.

• cil attr arg sizeofe(A:c attr arg,SA:c attr arg) : Sizeof argument.

• cil attr arg alignof(A:c attr arg,AT:c type) : Alignof type argument.

• cil attr arg alignofe(A:c attr arg,AA:c attr arg) : Alignof argument.

• cil attr arg unop(A:c attr arg,OP:unop,RA:c attr arg) : Unary opera-
tion argument.

• cil attr arg binop(A:c attr arg,OP:binop,LA:c attr arg,RA:c attr arg)
: Binary operation argument.

• cil attr arg dot(A:c attr arg,FA:c attr arg,F:string) : ‘Field’ access
argument.

8.11.21 c macro Syntax Predicates

• cil macro builtin(M:c macro) : M is a built-in macro, such as sizeof.

• cil macro ident(M:c macro,TEXT:string) : M is an identifier macro, such
as #define SIZE 3. TEXT is the string version of the macro.

• cil macro func(M:c macro,TEXT:string) : M is a function macro, such as
#define MAX(a,b) a<b?b:c. TEXT is the string version of the macro.

• cil macro func arg(M:c macro,A:int,FORMAL:string,ACTUAL:string) : Ar-
gument A to function macro M has formal string FORMAL and actual argument
string ACTUAL. Arguments are numbered starting from zero.

• cil macro x name(M:c macro,NAME:string) : The (human-readable) name
of a macro.

• cil macro x location(M:c macro,FILE:string,LINE:int,BBYTE:int,EBYTE:int)
: Source file location of a macro expansion, with file start and end bytes.

• cil macro x parent(M:c macro,PM:c macro) : The expansion of M is con-
tained within the expansion of PM.
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8.11.22 Translation Sessions

Each session stores all syntax predicates associated with a particular global symbol.
Additional syntax for another symbol not included in the current session (for ex-
ample, a global variable accessed in a callee of the currently analyzed function) can
be accessed by either explicitly using the session name, or by using merge preds
with that session and then accessing the syntax as normal.

• cil body(FUNC:string) : The type and definition of the function FUNC. In-
cludes all statements/expressions/etc. in the function, as well as type infor-
mation for all variables and fields explicitly accessed. Does NOT include
information for globals accessed only by callees, or composite type and field
information beyond that explicitly accessed.

• cil glob(GLOB:string) : The type of global variable GLOB.

• cil init(GLOB:string) : Any static initializer for global variable GLOB. This
is kept separately from cil glob because typically only the global’s type is
needed, and the initialization information can be quite huge (outgrowing even
the total size of the function definitions in a program).

• cil comp(COMP:string) : The type and field information for the composite
struct/union COMP.

• cil enum(ENUM:string) : The item information for the enum ENUM.

8.12 Graphviz Visualization

Package dotty provides predicates for generating graphviz description files for use
by such programs as dot and dotty. More information on graphviz can be found
at http://www.graphviz.org.

• dotgraph Type

The type of a dotty graph.

• dotty graph(NAME:string,DIRECTED:bool,GID:dotgraph) Find

Gets the graph GID associated with NAME. If no graph has been associated with
NAME, creates a new graph which is either directed or undirected according to the
flag DIRECTED. This graph and all nodes and edges added to it will be written out
to the file ‘NAME.dot’.

• dotty node(GID:dotgraph,VNAME: ) Add

Adds to graph GID a node with name VNAME.

http://www.graphviz.org
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• dotty edge(GID:dotgraph,ENAME: ,SNAME: ,TNAME: ) Add

Adds to graph GID an edge with name ENAME going from SNAME to TNAME. Adds
nodes SNAME and TNAME if they have not been yet been added.

• dotty attr(GID:string,NAME: ,ATTR:string,VS:string) Add

Adds to graph GID an attribute ATTR with string value VS on the node or edge with
name NAME. A few special names may be used to specify attributes of other items:

• graph : Specifies an attribute of the graph as a whole.

• node : Specifies a default attribute for every node.

• edge : Specifies a default attribute for every edge.

A full list of attribute names and possible values is available at http://www.
graphviz.org. Some of the more useful ones are below:

• color : The color of an edge or node.

• label : The label attached to an edge, or the name of a node.

• shape : The shape of a node. Examples values include ‘box’, ‘ellipse’, ‘circle’,
‘point’, and ‘plaintext’.

• style : The style of an edge or node. Examples values include ‘dashed’, ‘dot-
ted’, ‘solid’, ‘bold’, and ‘filled’.

8.13 User Interface Generation

Package display provides predicates for generating displays for use by the user in-
terface (Section 7.5). All displays will be stored (as compressed XML) in file ‘dis-
play.db’, and all generated search terms will be stored in file ‘search.db’. These
databases will typically be consumed by the UI itself, but the dbkeys and dbfind
utility apps may also be used to form queries. The XML schema used for displays
is given in Appendix B.

• display add(DISPLAY:string,REPLACE:bool,CATEGORY:string,TITLE:string,

FUNCTION:string,FILE:string,MINLINE:int,MAXLINE:int,

FOCUSLINE:int,DITEMS:list[displayitem]) Add

Generates a display with the globally unique identifier DISPLAY, with REPLACE indi-
cating whether this display should replace any existing display with that name, or
instead be dropped. CATEGORY describes the general class of displays this should be
bucketed with, while TITLE gives the user-readable title of the display. FUNCTION
gives the name of the source language function the display concerns, with FILE,
MINLINE, and MAXLINE giving the piece of the source code to render. The initial

http://www.graphviz.org
http://www.graphviz.org
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focus in the rendered page will be on line FOCUSLINE, with DITEMS specifying the
actual highlighting and text to render alongside the code.

• displayitem ::= d line style{LINE:int,CSSCLASS:string}
| d line text{LINE:int,CSSCLASS:string,

POSITION:displayposition,TEXT:string,

LINKS:list[displaylink]} Type

Each displayitem modifies the way the code is rendered by the UI.
A d line style specifies a new CSSCLASS to use in rendering the specified line.

CSSCLASS must be defined in whatever ‘file.css’ is used for rendering the displays,
and will typically contain foreground or background coloring information.

A d line text specifies TEXT and LINKS to other displays to be added when
rendering the specified line. CSSCLASS is the file.css class used when rendering the
text, and POSITION specifies where in relation to the line of code to render the text.

• displayposition ::= d left | d right | d bottom | d top Type

A position relative to a line of code to render a d line text item.

• displaylink ::= d link{DISPLAY:string,TEXT:string} Type

A clickable link to a display. The display DISPLAY should have been created sepa-
rately (possibly during analysis of another function) using the display add predi-
cate. The UI will render a link with text TEXT which, when clicked by the user, will
direct them to the rendered DISPLAY.

• search add(TERM:string,DISPLAY:string) Add

Generates a search term TERM mapped to display DISPLAY. When doing a search
within the UI, search term TERM will generate a list including DISPLAY as well as
any other displays associated with TERM.



Appendix A

Tutorial Locking Analysis

This appendix includes the full locking analysis developed during the Saturn tutorial
(Section 3).

% interprocedural locking analysis.

import "../memory/scalar_sat.clp".

analyze session_name("cil_body").

% PREDICATES

% the possible spinlock states
type lockstate ::= locked | unlocked | error.

% at program point P, trace T is in state S if G holds
predicate state(P:pp,T:t_trace,S:lockstate,G:g_guard).

% Summary edge on a call: if callee trace CT is in state SIN, it transitions
% to state SOUT.
predicate cedge(I:c_instr,T:t_trace,SIN:lockstate,SOUT:lockstate).

% extra unconstrained bits, true if T is locked at entry
type g_xrep ::= t_locked{t_trace}.

% SUMMARIES

% session with the lockstate summary of FN
session sum_locking(FN:string) containing [sedge].

% summary edge: if trace T is in state SIN, it transitions to state SOUT
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predicate sedge(T:t_trace,SIN:lockstate,SOUT:lockstate).

% RULES

% call transitions

% add transitions for direct calls to lock/unlock/trylock
dircall(I,"lock"),

+cedge(I,drf{root{arg{0}}},locked,error),
+cedge(I,drf{root{arg{0}}},unlocked,locked).

dircall(I,"unlock"),
+cedge(I,drf{root{arg{0}}},locked,unlocked),
+cedge(I,drf{root{arg{0}}},unlocked,error).

% add additional transitions according to summary information generated
% on the targets of direct calls
dircall(I,F), sum_locking(F)->sedge(T,SIN,SOUT), +cedge(I,T,SIN,SOUT).

% transfer functions

% adding will merge G into the condition under which T is in state S at P
predicate smerge(P:pp,T:t_trace,S:lockstate,G:g_guard).
smerge(P,T,S,_), \/smerge(P,T,S,G):#or_all(G,MG), +state(P,T,S,MG).

% LKG and UKG are conditions under which T is locked or unlocked at entry
predicate entry_locked(in T:t_trace,LKG:g_guard,UKG:g_guard).
?entry_locked(T,_,_), #id_g(br_abit{ar_extra{t_locked{T}}},LKG), #not(LKG,UKG),

+entry_locked(T,LKG,UKG).

% compute the initial lock states for any trace T whose lock state might
% change during the function’s execution (there is a call with a transition
% on T). generate a boolean variable indicating whether T is locked (LKG) or
% unlocked (UKG) at entry, and add the two states
entry(PIN), icall(P0,_,I), cedge(I,CT,_,_),

inst_trace(s_call{I},P0,CT,trace{T},_), entry_locked(T,LKG,UKG),
+state(PIN,T,locked,LKG), +state(PIN,T,unlocked,UKG).

% sets and branches don’t affect lockstate
iset(P0,P1,_), state(P0,T,S,G), eguard(P0,P1,G,EG), +smerge(P1,T,S,EG).
branch(P,P0,_,_), state(P,T,S,G), eguard(P,P0,G,EG0), +smerge(P0,T,S,EG0).
branch(P,_,P1,_), state(P,T,S,G), eguard(P,P1,G,EG1), +smerge(P1,T,S,EG1).

% call transfer function for locks where a transition is known
icall(P0,P1,I), cedge(I,CT,SIN,SOUT),

inst_trace(s_call{I},P0,CT,trace{T},BG),
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state(P0,T,SIN,SG), #and(BG,SG,G),
eguard(P0,P1,G,EG), +smerge(P1,T,SOUT,EG).

% for locks which do not have known transitions on the callee, we treat the
% call as a nop. since there may be multiple aliases of the lock, we need to
% get the conjunction over the negations of all conditions under which some
% alias for the lock does NOT have a transition on the callee

% NG is a negated condition for when T has a transition on the call at P.
% we assume that if there are any transitions, there will be transitions for
% all combinations of SIN (locked/unlocked only)
predicate edge_negate(P:pp,T:t_trace,NG:g_guard).
icall(P,_,I), cedge(I,CT,_,_),

inst_trace(s_call{I},P,CT,trace{T},G),
#not(G,NG), +edge_negate(P,T,NG).

% call transfer function for locks which do NOT have callee transitions.
% get the conjunction on the negated conditions and propagate forward unchanged
icall(P0,P1,_), state(P0,T,S,SG),

\/edge_negate(P0,T,NG):#and_all(NG,MNG), #and(MNG,SG,G),
eguard(P0,P1,G,EG), +smerge(P1,T,S,EG).

% call transfer function for locks in the error state
icall(P0,P1,_), state(P0,T,error,G),

eguard(P0,P1,G,EG), +smerge(P1,T,error,EG).

% summary computation

% for trace T, the SIN -> SOUT transition occurs when G holds
predicate trace_trans(T:t_trace,G:g_guard,SIN:lockstate,SOUT:lockstate).

% compute the transition conditions for each trace T. get the lock state
% at exit and combine with the boolean variable indicating whether the lock
% was locked (LKG) or unlocked (UKG) at entry
exit(P), state(P,T,S,SG), entry_locked(T,LKG,UKG),

#and(SG,LKG,LKGG), +trace_trans(T,LKGG,locked,S),
#and(SG,UKG,UKGG), +trace_trans(T,UKGG,unlocked,S).

% function FN has summary edge A/SIN/SOUT
predicate fedge(FN:string,T:t_trace,SIN:lockstate,SOUT:lockstate).

% combine the transition conditions with the return-non-zero conditions
% to compute all the summary transitions on the current function
cil_curfn(F), trace_trans(T,SG,SIN,SOUT), guard_sat(SG),

+fedge(F,T,SIN,SOUT), +sum_locking(F)->sedge(T,SIN,SOUT).
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% print out the results
?- fedge(FN,A,SIN,SOUT).



Appendix B

UI Display Schema

This appendix includes the XML schema for the displays rendered by the UI (Sec-
tion 7.5). Running dbfind on a ‘display.db’ file produced by an analysis produces
an XML snippet following this schema (e.g. run the aliasing or null analysis for ex-
amples). While Saturn analyses do not have to worry about the form of this schema
as it is generated transparently by the display package (Section 8.13), other tools
wishing to use the UI simply need to generate XML of this form accessible via a
command or script with the same interface as dbfind.

<!-- each "display" is a single view into the code base,
and can have any number of highlighted lines or additional text -->

<element name="display" minOccurs="1" maxOccurs="1">
<complexType>
<sequence>

<!-- unique name for this display, not shown on screen -->
<element name="name" type="string"/>

<!-- category and printed title for this display -->
<element name="category" type="string"/>
<element name="title" type="title"/>

<!-- source code info, with min and max line #s to fetch -->
<element name="function" type="string"/>
<element name="file" type="string"/>
<element name="minline" type="integer"/>
<element name="maxline" type="integer"/>

<!-- line to put initial viewer focus on -->
<element name="focusline" type="integer"/>

<!-- draw a particular line with a particular style -->
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<element name="linestyle" minOccurs="0" maxOccurs="unbounded">
<complexType>
<sequence>
<element name="line" type="integer"/>
<element name="cssclass" type="string"/>

</sequence>
</complexType>

</element>

<!-- draw some text around a particular line -->
<element name="linetext" minOccurs="0" maxOccurs="unbounded">
<complexType>
<sequence>
<element name="line" type="integer"/>
<element name="cssclass" type="string"/>

<!-- where to draw the text relative to the line itself -->
<element name="position">
<simpleType>
<restriction base="string">
<enumeration value="left"/>
<enumeration value="right"/>
<enumeration value="top"/>
<enumeration value="bottom"/>

</restriction>
</simpleType>

</element>

<element name="text" type="string"/>

<!-- clickable link to another named display -->
<element name="link" minOccurs="0" maxOccurs="unbounded">
<complexType>
<sequence>
<element name="name" type="string"/>
<element name="text" type="string"/>

</sequence>
</complexType>

</element>
</sequence>

</complexType>
</element>

</sequence>
</complexType>

</element>
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