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Abstract

Type casts are ubiquitous in Linux and other systems software. Casts

reinterpret a pointer to a heap object of one type as a pointer to another

type, and are the main way by which programmers can violate type

safety, the notion that objects are used as a consistent type throughout

their lifetime. A program which is not type safe can exhibit corruption

and crashes. Moreover, the C language provides no guarantees about

type safety, so responsibility for ensuring type safety falls entirely to

programmers.

This thesis describes an approach to proving that type casts pre-

serve type safety, specifically in the Linux kernel. This approach uses

automated static analysis to infer the abstractions underlying each type

cast: type casts are performed for a reason, often to implement poly-

morphism or another advanced programming language feature, and by

identifying this reason the cast can be proved safe. We prove this safety

for 75.2% of downcasts to structure types in Linux, out of a population

of 28767.

Analyzing type casts in Linux requires deep reasoning about the

heap at a scale far beyond the previous state of the art. This thesis

describes the numerous analysis techniques we developed for this prob-

lem, which are broadly applicable to doing sound and precise analysis

of the heap at a large scale.
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Chapter 1

Overview

1.1 Introduction

Type casts are ubiquitous in Linux and other systems software. Casts

reinterpret a pointer to one type as a pointer to another type, and are

the main way by which programmers can violate type safety, the notion

that objects are used as a consistent type throughout their lifetime. The

C language provides no guarantees about type safety, so responsibility

for ensuring type safety falls entirely to the programmers.

The focus of this thesis is on proving that type casts preserve type

safety, specifically in the Linux kernel. Our approach is to use static

analysis to infer the abstractions underlying a type cast — casts are

performed for a reason, often to implement polymorphism or another

advanced programming language feature, and by identifying this reason

we can prove the cast is safe. We can prove this safety for 75.2% of

downcasts to structure types in Linux, out of a population of 28767.

A program which is not type safe can exhibit corruption and crashes.

1



CHAPTER 1. OVERVIEW 2

More fundamentally, such a program will be extremely difficult to un-

derstand. Suppose we are reading a program and see a read of the form

x->f. A natural question is where that value came from. Which writes

in the program could have supplied that value?

If somewhere else in the program we see a write to y->f, we observe

that this write and the read could be to the same heap location, pro-

vided it is possible that x == y. What if the write is instead to a y->g,

where the type of y is unrelated to that of x? In general, the write and

read could be taken to be to the same heap location.

While aliasing between such terms as x->f and y->g does occur

occasionally in most systems software, in the vast majority of cases it

does not. Code which does not permit such aliasing is type safe, which

we’ll define as follows:

• An access to a field occurs when that field is either directly read

or written (x.f, x->f), or has its address taken (&x.f, &x->f)

and that pointer or a copy is later dereferenced.

• Any heap location (region of memory) accessed as a particular

field is only ever accessed as that same field.

A violation of type safety can come about through several means:

• Using pointer arithmetic to skip around the fields of a structure,

by taking either the base address or address of a structure’s in-

ternal field, and incrementing or decrementing it to refer to a

different field of that structure. However, it is fine to use the

Linux container of macro or a similar operation to obtain a

structure’s base address from the address of one of its fields.

• Misuse of the container of macro, specifying the wrong base

type or field for an internal field address, which will produce a
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malformed pointer potentially referencing any field of the con-

taining structure or even unallocated space.

• Using multiple fields of a union structure.

• Casting the same pointer into multiple incompatible types, al-

lowing the data referenced to be accessed as different fields of the

different types.

We target the last class, the problem of proving the correctness of

casts, and even then only for casts to structure pointers. We focus

on the Linux kernel, including all associated device drivers and file

systems. The version we analyzed, 2.6.17.1, contains several million

lines of code. How can we check that pointers to each structured value

are always cast to a consistent type?

1.2 Example

Take a typical function in Linux, saa7146 buffer timeout, which is

part of the device driver for the saa7146 chipset.

// drivers/media/common/saa7146_fops.c
void saa7146_buffer_timeout(unsigned long data)
{

struct saa7146_dmaqueue *q = (struct saa7146_dmaqueue*)data;
struct saa7146_dev *dev = q->dev;
unsigned long flags;

...
}

The first thing this function does is cast its integer parameter data

to a pointer to a value of type saa7146 dmaqueue, and then proceeds
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to access the contents of that structure. If data really is an integer and

not a pointer then these accesses will crash the system, and if data is a

pointer to an object that is not of type saa7146 dmaqueue then these

accesses will lead to corruption and/or a crash. We can prove this cast

is safe to perform, but doing so requires fairly deep reasoning about the

heap, control flow and data flow of the system.

We need to know who calls saa7146 buffer timeout and make sure

they always pass in a pointer to a value of type saa7146 dmaqueue. The

function saa7146 buffer timeout is never called directly. In fact, it

is only mentioned in two places, functions vbi init and video init

within the saa7146 driver.

// drivers/media/common/saa7146_vbi.c
static void vbi_init(struct saa7146_dev *dev,

struct saa7146_vv *vv)
{

INIT_LIST_HEAD(&vv->vbi_q.queue);

init_timer(&vv->vbi_q.timeout);
vv->vbi_q.timeout.function = saa7146_buffer_timeout;
vv->vbi_q.timeout.data = (unsigned long)(&vv->vbi_q);
vv->vbi_q.dev = dev;

...
}

// drivers/media/common/saa7146_video.c
static void video_init(struct saa7146_dev *dev,

struct saa7146_vv *vv)
{

INIT_LIST_HEAD(&vv->video_q.queue);

init_timer(&vv->video_q.timeout);
vv->video_q.timeout.function = saa7146_buffer_timeout;
vv->video_q.timeout.data = (unsigned long)(&vv->video_q);
vv->video_q.dev = dev;
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...
}

The timeout field used in these two functions is a value of type

timer list, a core kernel structure with the following signature:

// include/linux/timer.h
struct timer_list {

struct list_head entry;
unsigned long expires;

void (*function)(unsigned long);
unsigned long data;

struct tvec_t_base_s *base;
};

After being assigned to the function field of a timer list, we need

to figure out where this might flow and where saa7146 buffer timeout

might eventually be called. Some searching through the code reveals

that the function field never has its address taken, and is only ever as-

signed to the local variable fn in the core kernel function run timers.

// kernel/timer.c
static inline void __run_timers(tvec_base_t *base)
{

struct timer_list *timer;

...
while (...) {

...

while (...) {
void (*fn)(unsigned long);
unsigned long data;
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timer = list_entry(head->next,struct timer_list,entry);
fn = timer->function;
data = timer->data;

set_running_timer(base, timer);
detach_timer(timer, 1);

...
fn(data);
...

}
}

set_running_timer(base, NULL);
}

run timers then repeatedly pulls timer list’s off of lists, and

calls the timer->function function pointer with the timer->data

value. This exposes the design intent of the timer list structure:

whatever is stored in the function field of a timer list will be sub-

sequently called with the data field of that same timer list.

Then, when saa7146 buffer timeout is called here then it is only

be called with whatever the data field is in the timer list the pointer

to saa7146 buffer timeout is stored in. In the cases of vbi init

and video init, the data field points to the vbi q or video q fields,

respectively, of a saa7146 vv structure. Both of these queue fields

are of type saa7146 dmaqueue, which, recall, is the same type that

saa7146 buffer timeout expects. If saa7146 buffer timeout is only

called with these queues for its data parameter, then the cast it per-

forms is safe.

So, is it the case that saa7146 buffer timeout might be called

with a parameter other than these two queues, vbi q and video q?

There are two ways this could arise. First, the data field could be
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assigned another value (of a possibly different type) between the call to

vbi init/video init and run timers. Second, the function field

could be called somewhere else outside run timers with a parameter

other than the data field of that timer list.

As it turns out, in general for a timer list both of these cases are

possible. Fortunately, neither case happens to impact any timer list

which contains saa7146 buffer timeout in the function field.

Typically, the function and data fields of a timer list are writ-

ten at the same time, shortly after the timer list is created. Because

of the behavior of run timers, it does not do much good to set the

function field without setting the data field as well, and vice versa.

These writes do not impact the data passed to saa7146 buffer timeout,

as the function field will be changed to a value other than saa7146 buffer timeout.

However, there are two cases in Linux where the data field is written

without any corresponding write to the function field. An example is

tlclk interrupt.

// drivers/char/tlclk.c
static irqreturn_t tlclk_interrupt(...)
{

...
int_events = inb(TLCLK_REG6);
...

if (int_events & HOLDOVER_01_MASK) {
alarm_events->pll_holdover++;

switchover_timer.expires = jiffies + msecs_to_jiffies(10);
switchover_timer.data = inb(TLCLK_REG1);
add_timer(&switchover_timer);

} else {
...

}
...
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return IRQ_HANDLED;
}

Under certain circumstances tlclk interrupt will change the data

field of the global switchover timer variable to a non-pointer inte-

ger value. However, switchover timer cannot alias the timer list’s

which contain saa7146 buffer timeout — switchover timer is a stat-

ically allocated timer list, while the timers manipulated by vbi init

and video init are embedded in an outer saa7146 dmaqueue struc-

ture.

The second case where saa7146 buffer timeout might receive a

value other than the two input queues occurs when the function field

of a timer list is invoked with a different argument than the data

field. There are five places in the kernel where the function field

is invoked, and run timers is the only one where the data field is

passed (though at runtime this is where the overwhelming majority

of timers are invoked). The other four follow similar patterns, with

ctnetlink del conntrack as one example.

// net/ipv4/netfilter/ip_conntrack_netlink.c
static int
ctnetlink_del_conntrack(...)
{

struct ip_conntrack *ct;

...
ct = tuplehash_to_ctrack(h);
...

if (del_timer(&ct->timeout))
ct->timeout.function((unsigned long)ct);

ip_conntrack_put(ct);
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return 0;
}

Instead of passing ct->timeout.data to ct->timeout.function,

ct itself is passed instead, exploiting knowledge that these two point-

ers are in fact identical; the ct->timeout.data field is a parent pointer

back to ct itself. As with switchover timer from the previous exam-

ple, in this case we know ct->timeout cannot alias the timers from

vbi init and video init, as the two timers are embedded in different

types of structures. Thus, the call to ct->timeout.function cannot

invoke saa7146 buffer timeout.

1.3 Analyzing Casts

The great majority of casts in Linux require reasoning on par with that

for the saa7146 buffer timeout cast, and for many the reasoning is

far more complex.

The central concept behind our analysis is to emulate this reasoning

process, to model as closely as possible model the arguments that a

human reader will make when determining the correctness of the code.

A human reader has the advantage of a good understanding (hopefully!)

of how the code works, allowing them to more easily wade through

the code to find the relevant portions. An automatic analysis has the

advantage of far more computational power, allowing it to go through

all the code that could possibly be relevant, and to ideally analyze it

with sufficient precision to arrive at the same conclusion as the human.

An important idea falling out of this central concept is that, while

proving the correctness of a cast may require tens or hundreds of reason-

ing steps, each of those steps is fairly small and self contained. Most
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systems code needs to be well-written to be easy to understand, to

maintain and to update. As such, most of the code’s invariants and

other abstractions will be simple, and will follow from each other with

simple reasoning steps. Problems arise from either the sheer scale of

the system, or from the use of strange or overly complex abstractions.

We divide the casting analysis according to the main types of rea-

soning required to determine the correctness of a cast, each of which is

reflected in the previous example.

• Function pointers: to know the possible values of data when

saa7146 buffer timeout is called, we first need to know where

saa7146 buffer timeout might be called. We can get this in-

formation by finding the places where the function is mentioned,

and then follow it through any assignments until we get to the

indirect calls in run timers and ctnetlink del conntrack.

Alternatively, we can start at the indirect calls themselves, and

follow assignments to the function pointer backward until we find

the possible functions it could be referring to. The complete set

of possible callers are those indirect call sites whose target can be

followed backwards to saa7146 buffer timeout.

• Escaping locations: extending the function pointer analysis con-

cept, we can track any location as it is assigned from one location

to another, going forwards or backwards to find out where it might

have originated or where it might be consumed.

Within the ctnetlink del conntrack function, we determined

that the indirect call ct->timeout.function(...) could not

target saa7146 buffer timeout because the two ct->timeout

fields cannot refer to the same timer as vv->vbi q in vbi init.
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If the call was instead through some ptimer->function(...),

where ptimer has type timer list*, we could still determine

whether ptimer can point to &vv->vbi q by following back along

the assignments to ptimer to see where it came from. Alterna-

tively, we could take assignments of &vv->vbi q and follow them

forward to see where the address of that field might go to.

• Polymorphic data correlations: of all the possible values of the

data and function fields of a timer list, only a few values

of data can be associated with a particular function, and vice

versa. By looking at all the assignments to these fields, we can de-

termine that when the function is saa7146 buffer timeout, the

only possible values for data are those which were set by vbi init

and video init. When run timers invokes the function field

and calls saa7146 buffer timeout, the only possible data argu-

ments are these two values.

• Cast propagation: finally, we can check the safety of the cast

in saa7146 buffer timeout by propagating backwards from the

cast to make sure all the possible values of data are of type

saa7146 dmaqueue. With the function pointer and escape anal-

yses we determine the only caller of saa7146 buffer timeout is

run timers, and with the polymorphic data analysis we deter-

mine the possible values of data when saa7146 buffer timeout

is invoked at that call site. These two values vv->vbi q and

vv->video q are of type saa7146 dmaqueue, thus the cast is safe.

Within each of these main analyses, there is further subdivision pos-

sible, again along the lines of how we expect a human reader to reason

about the code. At a broad level, each of the analyses is composed from

three pieces:
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• A small set of abstraction types. Abstractions are the basic facts

which the reader builds up as they try to prove the correctness of

a cast or whatever property they care about. Abstraction types

are the patterns which abstractions tend to follow, e.g. “Field f of

structure str is never NULL.” There are few abstraction types rele-

vant to each analysis because, for code readability and maintain-

ability, programmers tend to reuse existing abstractions wherever

possible.

• For each type of abstraction, a set of independent, heuristic sub-

analyses to infer that abstraction from the code and from other

inferred abstractions. These encode the individual reasoning steps

the reader makes, how new facts can be learned from existing facts

and from reading the code, e.g. “Field f of structure str is never

NULL if it is only assigned the values of other non-NULL fields.”

We call these sub-analyses heuristic because they target and are

built around specific patterns used over and over in the code.

These sub-analyses are generalized to handle as many cases as

possible, but no single one can handle all the ways by which the

abstraction could be inferred. Using multiple independent sub-

analyses that infer the same sort of information but target wholly

different coding patterns greatly increases the total coverage.

• For each type of abstraction, a small set of annotations to handle

cases too strange or non-standard to be covered by the heuris-

tics, and too important to simply be ignored. Most problems we

are interested in are complex enough to make it extremely dif-

ficult to build a fully automatic, scalable analysis that handles

all cases with sufficient precision. On the other hand, an easy to
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build analysis can handle many cases but not enough, leaving an

overwhelming annotation burden for the remainder.

We try to split the difference with analyses that are just complex

enough to handle the great majority of cases, leaving annotations

for the small remainder.

In the remainder of this section we give a quick overview of each

of the main analyses used in this thesis. Complete descriptions of the

analyses, their abstractions and sub-analyses are given in their respec-

tive chapters. The annotations we used are covered within Chapter 9.

1.3.1 Function Pointer Analysis

The function pointer analysis constructs a coarse but useful upper

bound on the possible targets of each indirect call.

• Two types of abstractions are in use. First, which program vari-

ables and structure fields might have their values later used as

the target of a particular indirect call? Second, for these indirect

calls, what are the functions which might be assigned to those

variables and fields?

• Sub-analyses follow assignments between variables and fields. If

there is some ’x = y;’ and the value of ’x’ might be used by a

later call, the value of ’y’ might also be used by that call. If ’y’ is

a specific function, that function may be a specific target of the

call.

• Annotations are needed to model cases involving more than just

variables and fields, such as storing a function in a heap-allocated

array.
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1.3.2 Escape Analysis

The escape analysis takes a program location and finds all the other

places that location either might escape to or might have escaped from

via a series of assignments.

• One main abstraction is used: for two locations l0 and l1, is it

possible that l1 might have the same value as l0, due to a series

of assignments from l0 to l1?

• Sub-analyses follow assignments to construct a forward or back-

ward closure from the initial location. Locations vary in coarse-

ness (“Field f of variable x” is a location, and so is “field f of all

values of type str”), and different sub-analyses vary the coarse-

ness of the search they perform.

• Annotations are only needed to cut off the search when it propa-

gates to locations irrelevant to analysis. In particular, we abstract

away the data structures underlying the primitive memory allo-

cators (e.g. kmalloc).

1.3.3 Polymorphic Data Analysis

The polymorphic data analysis finds the possible correlations between

particular function pointers and particular bits of program data when

they are stored in polymorphic structures like timer list. These struc-

tures are ubiquitous in C systems code.

• Two abstractions are used. First, which calls can use a polymor-

phic relationship between a function pointer and data stored in

the same structure? Second, for those polymorphic relationships,

what are the particular possible correlations that might exist?
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• We need just one sub-analysis to find the polymorphic relation-

ships for each call by comparing the function pointer target of the

call with the arguments passed in. For run timers, the two are

fields of the same timer list structure. Getting a precise bound

on the correlations is far more difficult, and requires several sub-

analyses targeted to the initialization patterns used by the bulk

of these structures.

• Annotations are needed for any polymorphic structure whose ini-

tialization does not match the fairly narrow patterns covered by

the sub-analyses.

1.3.4 Casting Propagation Analysis

The casting analysis constructs a proof for the correctness of each cast

by enumerating the possible reasons that cast could be correct (due

to a type invariant, type constraint in the caller, etc.) and recursively

trying, in parallel, to prove that any one of those reasons must hold.

• The abstraction types describe the proofs and subproofs that can

be made about the types of values in the program. “x always has

type str at entry to foo” is a subproof, as are “the first argument

to function call i in foo always has type str” and “field f of type

xstr always has type str”.

• As with the polymorphic data analysis, there are many possible

ways each subproof might be proved, often with the help of one

or more other subproofs. Each of these ways corresponds to a

different sub-analysis.

• Few annotations are needed. Casts we can’t prove correct with
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the information and techniques we have are rejected as possibly

unsafe.

1.4 Soundness and Completeness

The analyses described here are incomplete — they approximate the

possible behaviors of the code in places they do not understand it.

This approximation is nearly sound, though; besides the exceptions

described below, it does completely characterize the possible behaviors,

and if it marks a downcast as safe, that downcast is safe.

The only source of unsoundness in the analyses as designed (the

abstractions and sub-analyses described in Section 1.3) are that they

assume the program is type safe along its execution path to the point of

the cast being analyzed. If the program has a type safety violation and

that first violation is a bad downcast, the analysis will find it. However,

if there is a first violation which is not a bad downcast, but is some

other type safety violation, the analysis may or may not find any later

bad downcasts.

More important are a few sources of unsoundness that creep in

during the implementation of the analysis. These are the following:

• The annotations described in Section 1.3 are trusted. Since they

describe pieces of the code the sub-analyses do not understand,

we cannot check if they are actually correct. If the annotations

have bugs and do not characterize the code correctly, we will not

detect these bugs.

• The abstractions inferred by the sub-analyses are designed to be

correct by construction (i.e. the sub-analyses themselves should

be sound and always infer sound information), and we do not have
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an independent way to verify this. If the sub-analyses contain

bugs, we will not detect these bugs.

• Most of the sub-analyses are summary-based, only analyzing and

generating information for a single function at a time. Analysis

can time out on a small fraction of functions, and these timeouts

can affect the soundness of the analysis results for those functions

(some sub-analyses, in particular those used for the final casting

analysis itself, produce sound information even in the presence of

timeouts). These timeouts affect less than .5% of the functions

in the Linux version we analyzed.

With these caveats, out of 28767 downcasts in Linux, our analysis

is able to prove the safety of 21637, or 75.2% (this population does

not include every downcast in Linux; for details see Section 9.6). We

have gone through these results extensively both to work on proving

previously missed casts, and to look for bogus proofs, those which are

incorrect due to one of the above factors. Out of several hundred ex-

amined we have found a few bogus proofs (all caused by timeouts), so

while these bogus proofs exist, they are an extremely small fraction of

the number of proved casts.

1.5 Contributions

The main contributions of this thesis are summarized as follows:

• We developed the Saturn infrastructure, which is based around

a new logic programming language for summary-based program

analysis (Chaper 2). All our analyses are written using this lan-

guage.
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• We specify an exact memory model for the behavior of a function

or loop body (Chapter 3). This model soundly and accurately

considers interprocedural aliasing and side effects of calls (Sec-

tion 5.3), and is used by most of our analyses.

• We specify a function pointer analysis for identifying indirect call

targets, which is self-contained and achieves fairly accurate results

(Chapter 4).

• We specify an escape analysis for following values forward or back-

ward through the program, which is largely demand driven and

offers a highly tunable level of precision (Chapter 5).

• We describe the use of data correlations to model the behavior of

polymorphic structures, and specify an analysis to discover these

correlations (Chapter 6).

• We specify an analysis to prove the safety of downcasts to struc-

ture types, in the presence of polymorphism and other complex

heap behavior (Chapter 7).

• We describe in detail the results of these analyses, including where

the analyses fall short when applied to Linux, how these fail-

ures are addressed using annotations, and code patterns in Linux

falling entirely outside the purview of the analyses (Chapter 9).



Chapter 2

Saturn Infrastructure

All the analyses we will describe were built using the Saturn program

analysis infrastructure, for which we given an overview in this chapter.

Saturn is a highly scalable infrastructure supporting the precise anal-

ysis of C code, which can run efficiently on a computer cluster and is

designed for the sorts of analyses we will use in this thesis: analyses

which examine a small piece of the program at a time (usually a single

function), and use heuristic techniques to infer abstractions from that

piece and from the other abstractions that have already been inferred.

(Saturn as described here was developed based on the original version

of Saturn by Xie and Aiken [31]).

These analyses have two important characteristics.

• Abstractions are simple and compact. It should be easy to con-

cisely specify an abstraction.

• There may be many independent techniques for inferring the same

abstraction. It should be easy to write and to tweak these tech-

niques for the target code base.

To accomodate these characteristics, Saturn analyses use a very

19
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simple execution model. All abstractions and other data are expressed

as predicates over strings, integers, bools, and other datatypes. All

analysis inference techniques and other logic are expressed as rules in

a logic programming language over these predicates.

With this model, specifying an abstraction just requires one to de-

fine one or a few predicates and the types of their arguments. Speci-

fying a new inference technique requires one to add one or more rules

and maybe some intermediate predicates. The result is an extremely

compact analysis; the entirety of the analyses in this project, from the

initial syntax trees to the final proofs of correct casts, are written in

6031 non-comment non-blank lines of code.

The remainder of this chapter is organized as follows. In Section 2.1

we describe the logic programming language. In Sections 2.2 and Sec-

tion 2.3 we describe how the language interfaces with the front end

syntax trees and any back end constraint solvers, respectively. Finally,

in Section 2.4 we describe how the logic programs are used to perform

interprocedural analysis.

2.1 Logic Programming Language

The logic programming language used by Saturn analyses is Calypso,

which was designed specifically for Saturn (out in the real world, Ca-

lypso is a small, irregularly shaped moon orbiting the planet Saturn).

Calypso is a fairly standard Datalog-like language [28], with extensions

for interfacing with external databases and constraint solvers, and to

allow an easy mixture of eager and demand-driven analysis.

In this thesis we cover only the portion of Calypso syntax used in

later chapters to specify the various Saturn analyses. We use a couple of

running examples through the following subsections to illustrate various
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concepts.

2.1.1 Values and Types

Facts in Calypso are predicates over primitive values. Calypso values

and predicates are strongly and statically typed, such that every value

and variable has a type known during compilation which must match

the signature of the predicate in which it is used.

Types in Calypso are the primitive string, int, bool, analysis-

defined datatypes, and opaque types defined by solvers and other pack-

ages external to the analyses (see Section 2.3). Datatypes are declared

with the type keyword.

The following example defines a datatype for the possible nodes in

some graph with a distinguished source and sink. Possible values of

type node include source, sink, point{"foo"} and point{"bar"}.

type node ::= source | sink | point{string}.

Datatypes can be polymorphic over other types. In the following

example, the variable T may be any type; the type of a list of integers is

list[int], and contains such values as nil and cons{1,cons{2,nil}}.
Note also that type list[T] is recursive, defined in terms of itself.

type list[T] ::= nil | cons{T,list[T]}.

Type aliases can be created with the = operator. In the following

example, list[int] and intlist may be used interchangeably.

type intlist = list[int].

Types can be declared but not defined by omitting the ::= and =

operators. In this case the type’s contents are left abstract, and the

type may be completely opaque if it is defined within a package.
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The grammar for type identifiers, variables, types and type decla-

rations is as follows:

id : string beginning with lowercase letter

var : string beginning with uppercase letter

anyvar : ‘ ’ (an unnamed variable)

type ::= var | id | id ‘[’ var0 ‘,’ ... ‘]’

declval ::= id | id ‘{’ type0 ‘,’ ... ‘}’
typedecl ::= ‘type’ type ‘::=’ declval0 ‘|’ ... ‘.’

| ‘type’ type ‘=’ type′ ‘.’

| ‘type’ type ‘.’

2.1.2 Predicates

Predicates in Calypso are declared with the predicate keyword, spec-

ifying the number and type of arguments the predicate takes. The

following predicate defines the space of graph edges between values of

type node.

predicate graph_edge(X:node, Y:node).

All known facts about the program are encoded using predicates.

For each predicate declaration, at any given time there is a finite set

of known instances of that predicate — that predicate name with

particular values for its arguments. For the graph edge predicate

a few example instances are graph edge(source,point{"foo"}) and

graph edge(point{"bar"},sink). The job of the Calypso rules is to

infer new predicate instances from the known instances.

As with types, Calypso predicates can be polymorphic. The follow-

ing predicate can relate a list of items to the individual items in the

list, for any type of list.
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predicate list_mem(L:list[T], M:T).

The grammar for predicate declarations is as follows (though we

will extend this slightly in Section 2.1.4):

predarg ::= var ‘:’ type

preddecl ::= ‘predicate’ id ‘(’ predarg0 ‘,’ ... ‘)’ ‘.’

2.1.3 Rules

Rules in Calypso follow the same basic syntax as Prolog and Datalog.

These are Horn clauses of the form X:-Y, Z. indicating that if predicate

instances Y and Z both hold, predicate instance X also holds. The

arguments to X, Y and Z may refer to variables, which will be bound,

or unified with, all the corresponding arguments in the known predicate

instances.

Consider the following example, which computes all nodes reachable

over graph edge predicate instances from the source node.

predicate source_reach(X:node).

source_reach(X) :- graph_edge(source,X).

source_reach(Y) :- source_reach(X), graph_edge(X,Y).

The first rule indicates that any node connected by a graph edge

from source is reachable from source. For each edge from source,

variable X is bound to the target of that edge, and then the new instance

of source reach is created with that bound value of X.

The second rules indicates that any node connected by a graph edge

from any node reachable from source is itself reachable from source.

For each node in source reach, bind X to that node, and then for any

node reachable from that X, bind Y to the target and add source reach

for that Y.
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Besides the simple rule queries used in the bodies of the rules de-

riving source reach, there are three other types of clauses that can be

used: unification, negation, and collection clauses.

Unification clauses are specified with the = operator between two

values, unifying them and binding variables on one side to the corre-

sponding values on the other. If the two sides are not unifiable, such as

source=point{ }, the unification fails and the rule’s target predicate

instance is not added. If we replace the rules for source reach with

the following rules, we will compute only the point nodes reachable

from source via other point nodes.

source_reach(X) :-

graph_edge(source,X), X=point{_}.

source_reach(Y) :-

source_reach(X), graph_edge(X,Y), Y=point{_}.

Unification clauses can be negated by replacing = with \=, yielding

a clause that succeeds if the two sides are not unifiable. Replacing

= with \= in the above rules will compute only the non-point nodes

reachable from source through non-point nodes.

Negation queries, specified with the ∼ operator, do not bind any

variables, but are tests that hold only if there are no predicate in-

stances which match the arguments to the negation. The following

rule computes all the nodes which have an incoming edge but are not

reachable from the source node.

predicate not_reach(X:node).

not_reach(X) :- graph_edge(_,X), ~source_reach(X).

Collection queries, specified with the \/ operator, are used to com-

bine all predicate instances matching its arguments using a special col-

lection operator. The following rule computes a list containing all nodes
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reachable from the source node. The list all operator constructs a

list L from all values X which are bound by some source reach predi-

cate instance.

predicate all_reach(L:list[node]).

all_reach(L) :- \/source_reach(X):list_all(X,L).

The grammar for Calypso rules is as follows:

val ::= var | int | bool | string

| id | id ‘{’ val0 ‘,’ ... ‘}’
predval ::= id ‘(’ val0 ‘,’ ... ‘)’

ruleval ::= predval | val0 ‘=’ val1 | val0 ‘\=’ val1

| ‘∼’ predval | ‘\/’ predval ‘:’ predval

rule ::= predval ‘:-’ ruleval0 ‘,’ ... ‘.’

2.1.4 Modes and Execution Model

Logic programming languages normally use either an eager or demand-

driven execution model (also known as bottom-up and top-down). Dat-

alog variants tend to be eager, computing all predicate instances that

can possibly be derived from the rules. Prolog variants tend to be

demand-driven, computing only the predicate instances necessary to

prove a particular goal, or target predicate instance.

The execution model used for Calypso programs is mostly eager.

For the source reach predicate in the previous section, given a set of

graph edge instances representing the graph, the rules will be applied

exhaustively to find all nodes in the graph reachable from source.

The demand-driven alternative would be to compute source reach

for particular nodes referenced in other rules. For example, if there
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was a rule X :- ..., source reach(sink). we would try to com-

pute source reach specifically for sink with a backtracking search

backwards along graph edge instances from sink.

Trying this search using the two rules which derive source reach is

likely to be incredibly wasteful, revisiting the same nodes over and over

as it finds new paths to them backwards from sink. It is possible to

write an efficient demand-driven graph search using lists of the visited

and frontier nodes in the search, but the result is cumbersome and

negates much of the reason for using a logic programming language in

the first place.

There are, however, cases where we want to be demand-driven. Con-

sider the list mem predicate from earlier, for which we can define rules

as follows:

list_mem(L,X) :- L=cons{X,_}.

list_mem(L,X) :- L=cons{_,TAIL}, list_mem(TAIL,X).

Applying these rules eagerly results in constructing list mem for all

possible lists, a process which does not terminate.

We can specify that list mem must be computed in a demand-

driven fashion using a mode for the list mem predicate. A mode ex-

tends the predicate declaration to specify which arguments to the pred-

icate must already be known before that predicate can be computed.

Each predicate has a set of input arguments specified with the in key-

word and a set of output arguments specified with the out keyword

(out is the default if neither keyword is used). The execution model

is then: for particular values of the input arguments, what are the

possible values of the output arguments?

In the case where there are no input arguments, this becomes ‘what

are the possible values of all the arguments,’ the eager execution model

from before.
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For list mem, we want to be sure that the list mem instances are

only computed for particular lists mentioned during the evaluation of

other rules. The declaration of list mem with the desired mode is as

follows:

predicate list_mem(in L:list[T], out M:T).

Now, when there is a rule which includes as a clause list mem(XL,X)

where, during evaluation, XL is bound to a particular list such as

cons{1,cons{2,nil}}, then the rules for list mem will be applied but

only after binding L to that particular list. If there is a rule such as

list mem( ,X) then a compile-time error will be generated because

could be any value.

The last concern with modes are determinism constraints. For par-

ticular values of the input arguments to a predicate, how many different

values of the output arguments can there be? In general, there could be

zero (the predicate failed), one or more outputs for any given input. A

determinism constraint, specified with the succeeds keyword, specifies

a range for the possible number of outputs, and after execution termi-

nates the constraints are checked and warnings generated for predicates

which violated them.

The possible constraints are zero, once, or many (one or more), and

multiple constraints can be specified in which case the union of their

ranges is used.

Some examples of determinism constraints are below. list mem

may succeed any number of times, while fetching the last member of

a list succeeds at most once, and fetching the length of a list always

succeeds once.

predicate list_mem(in L:list[T], out M:T)

succeeds [zero,many].
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predicate list_last(in L:list[T], out M:T)

succeeds [zero,once].

predicate list_length(in L:list[T], out LEN:int)

succeeds [once].

The updated grammar for predicate declarations is as follows:

succ ::= ‘zero’ | ‘once’ | ‘many’

succlist ::= ‘succeeds’ ‘[’ succ0 ‘,’ ... ‘]’

predarg ::= [‘in’|‘out’]? var ‘:’ type

preddecl ::= ‘predicate’ id ‘(’ predarg0 ‘,’ ... ‘)’ succlist? ‘.’

2.1.5 Sessions

During software analysis, Calypso programs are run not over the entire

source of the target code base, but rather over the code for individual

functions, global variables, or types. With the Calypso features shown

so far, there is no way for the Calypso analyses of different functions to

communicate with one another — the Calypso program will do some

processing on the function’s syntax, maybe print some output, and then

terminate. To allow interprocedural analysis, the program run on one

function needs to be able to receive information about the runs on other

functions, and in turn to pass new information about the function it is

analyzing on to the runs on other functions.

The model we use to allow this communication is a session, a map

that stores predicate instances and persists across the entire interproce-

dural analysis. The keys in a session are session instances, an identifier

with zero or more value arguments (the same syntactic structure as

predicate instances). The values in a session are sets of predicate in-

stances.

Calypso programs are free to query the predicate instances in a
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session, and to add new instances to the session. After the program

terminates, all predicate instances computed which were not stored in

a session are thrown away; these are intermediate results which will not

be used by other runs in the interprocedural analysis.

To illustrate how sessions work, we revisit the graph search example

in a program analysis context. Consider the problem of identifying

functions that always abort the program, such as abort, exit, and, in

Linux, panic. It is useful to know these functions because control never

returns to points after their call sites; if we account for this fact during

analysis we can more accurately reason about code where aborts occur.

Additionally, these functions often have wrappers in different parts

of a code base, user-defined functions which always terminate the pro-

gram by calling a primitive abort function or another wrapper. Instead

of finding these by hand we can infer them, looking for functions where

there is no path from the entry point to exit point which does not pass

through a call to a function known to abort. We will write an analysis

to compute the aborting functions and store that information in the

abort function session.

session abort_function(FN:string) containing [abort].

predicate abort().

This declaration specifies a session map named abort function

from function names to a set of abort predicate instances (containing

specifies the possible predicates that can appear in a session). Because

abort takes no arguments, there is only a single possible instance of

it, so for any function FN, abort function(FN) will contain either no

instances, or the single instance abort(). In the former case, FN is not

known to always abort (it is possible that it might, however), and in

the latter case calls to FN will always abort.
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To compute abort function, we need a model of the current func-

tion’s control flow graph. Points in the control flow graph are rep-

resented with the abstract type pp (for “program point”). This is

a datatype filled in by whichever analysis constructs the control flow

graph).

type pp.

The edges and the entry/exit/call points of the control flow graph

are modelled with the predicates below, along with the name of the

current function.

predicate cfg_edge(P0:pp,P1:pp).

predicate cfg_entry(P:pp).

predicate cfg_exit(P:pp).

predicate cfg_call(P:pp,FN:string).

predicate current_function(FN:string).

We introduce a demand-driven auxiliary predicate abort call, which

indicates for any point in the CFG whether that is a call to an abort

function — it either specifies abort explicitly, or it calls some function

for which the abort function session contains the abort predicate.

The operator -> is used to access the contents of a session.

predicate abort_call(in P:pp).

abort_call(P) :-

cfg_call(P,"abort").

abort_call(P) :-

cfg_call(P,FN), abort_function(FN)->abort().

Finally, we compute abort function(FN)->abort() with a graph

reachability analysis. Predicate instance entry reach(P) indicates

that point P is reachable from the function entry point over a path

that does not pass through an abort call.
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predicate entry_reach(P:pp).

entry_reach(P1) :-

cfg_entry(P0), ~abort_call(P0), cfg_edge(P0,P1).

entry_reach(P1) :-

entry_reach(P0), ~abort_call(P0), cfg_edge(P0,P1).

abort_function(FN)->abort() :-

current_function(FN), cfg_exit(P), ~entry_reach(P).

For information on the execution model used for interprocedural

analysis, see Section 2.4. The grammar for session declarations is as

follows:

containlist ::= ‘contains’ ‘[’ id0 ‘,’ ... ‘]’

sessarg ::= var ‘:’ type

sessdecl ::= ‘session’ id ‘(’ sessarg0 ‘,’ ... ‘)’ containlist? ‘.’

We extend the predval nonterminal used in the grammar for rules

as follows to handle queries and updates on session contents.

predval ::= id ‘(’ val0 ‘,’ ... ‘)’

| id ‘(’ val0 ‘,’ ... ‘)’ ‘->’ id ‘(’ val0 ‘,’ ... ‘)’

2.2 Frontend AST

Saturn uses the Cil infrastructure [20] as a frontend to generate the

abstract syntax tree, or AST, for each function, type and global variable

in the target program. These trees are converted to predicates, and

the resulting predicates are stored in several sessions for use by later

analyses. The sessions storing these AST predicates are as follows:

cil_body(FN:string).

cil_comp(C:string).
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cil_glob(G:string).

cil_init(G:string).

The session cil body(FN) contains the AST for the definition of

function FN — the names and types of its arguments and locals, and

all its control flow, assignments and calls. The session cil comp(C)

contains the AST for the composite struct or union type C, while

cil glob(G) contains the AST for the declaration of a global vari-

able G and cil init(G) contains the AST for its static initializer, if it

has one.

The syntax predicates themselves are over opaque types for the dif-

ferent kinds of AST nodes, such as c instr, c lval, and c exp for as-

sign/call instructions, lvalues and expressions, respectively. The predi-

cates relate one node in the AST to its children; for example, a memory

access appears as an instance cil lval mem(LV,ME,OFF), relating the

dereference lvalue LV with the expression which was dereferenced ME

and the field/array offset OFF from *ME. This structure directly reflects

the Cil syntax tree.

2.2.1 AST Session Analysis

Different Calypso programs may be run on each of the functions, glob-

als, or types in the program. Each program specifies which kind of

AST it should run over by specifying the name of that session with the

analyze keyword.

analyze session_name("cil_body").

This directive indicates to the interprocedural analysis that to run

this program, some cil body(FN) session instance needs to be picked,

and all the predicate instances stored in it loaded as the initial known

instances.
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2.2.2 AST Control Flow Graphs

Almost all Saturn analyses that analyze functions work from a low level

control flow graph, rather than the structured if/while/etc. statements

of the AST. When analyzing the cil body session, a control flow graph

is generated from the function’s syntax, encoding the entirety of the

function’s execution with the following low-level types and predicates:

• type pp. An abstract type for program points in the function’s

execution.

• predicate cfg entry(P:pp). The unique entry point of the

currently analyzed function.

• predicate cfg exit(P:pp). The unique exit point of the cur-

rently analyzed function.

• predicate cfg branch(P:pp,P0:pp,P1:pp,E:c exp). If the

point of execution is at P, control will transfer to either P0 or

P1, depending on whether the value of expression E is nonzero or

zero, respectively.

• predicate cfg call(P0:pp,P1:pp,I:c instr). If the point of

execution is at P0, the function call indicated by I is executed

and control transfers to P1.

• predicate cfg set(P0:pp,P1:pp,LV:c lval,E:c exp). If the

point of execution is at P0, the location indicated by lvalue LV is

assigned the value of expression E.

The main property maintained for these control flow graphs is they

do not contain loops. The local memory analysis which will be used by

many analyses (Section 3.3) constructs an exact model of a function’s
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behavior, and as such does not terminate on control flow graphs con-

taining loops. Loops in the AST’s flow are removed by converting them

to tail recursive functions. Client analyses will treat these new tail re-

cursive loop functions as regular source functions, and analyze them

independently from the source function they were originally contained

in. An example of this loop splitting is as follows:

void foo(int *buf)

{

for (i = 0; i < 100; i++) {

buf[i] = 0;

}

}

foo

{

i = 0;

call(foo_loop);

}

foo_loop

{

if (i < 100) {

buf[i] = 0;

i++;

call(foo_loop);

}

}

The Linux kernel version we analyze has 91,384 source functions

and 34,409 loops. The analyses described in future chapters do not

distinguish between the CFGs generated for these two categories, and

we refer to these collectively as ‘functions’ throughout.
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2.3 Constraint Solver Interface

Many of our analyses need to be path-sensitive — that is, to consider

the conditions under which paths are taken and particular program

points are reached. Performing a path-sensitive analysis requires us to

do constraint solving to determine which paths through a function are

actually feasible or not. Logic programming languages are ill-suited

to constraint solving, and as such we have designed Calypso to allow

programs to easily interface with external solvers and other packages.

A package in Calypso is just a set of opaque types and predicates.

When the Calypso program queries one of the predicates, instead of

looking for rules which can derive that predicate the Calypso interpreter

will call into the underlying solver to get the query’s result.

For example, a package for operations on finite sets includes the

following definitions (and some others). The set[T] type is opaque,

and is represented internally as a sorted list (the sets Calypso programs

generate typically don’t get big enough to make a faster implementation

worthwhile). The various predicates either get the members of the set,

or create new sets from existing sets and values; a collection operator

set all can be used in a collection like list all to construct a set

from all predicate instances matching some query.

type set[T].

predicate set_member(in S:set[T], out X:T)

succeeds [zero,many].

predicate set_empty(out S:set[T])

succeeds [once].

predicate set_insert(in S:set[T], in X:T, out NS:set[T])

succeeds [once].

collection set_all(in X:T, out NS:set[T]).



CHAPTER 2. SATURN INFRASTRUCTURE 36

The most important package in Saturn defines predicates for con-

structing boolean formulas and passing them on to a SAT solver. These

formulas are used to determine path feasibility in the target program.

As with the set logic package, the boolean formula package includes an

opaque type bval[T] for formulas over unconstrained boolean variables

of type T, and various predicates to construct them: bool g constructs

a true or false formula, id g constructs an unconstrained leaf formula

for some variable, and these are combined with the and, or and not

predicates or the and all and or all collections. Finally, the satisfi-

ability of any formula G is queried with sat(G). Internally, using the

sat predicate converts the formula to CNF and calls into an underlying

SAT solver.

type bval[T].

predicate bool_g(in B:bool, out G:bval[T])

succeeds [once].

predicate id_g(in X:T, out G:bval[T])

succeeds [once].

predicate and(in G0:bval[T], in G1:bval[T], out G:bval[T])

succeeds [once].

predicate or(in G0:bval[T], in G1:bval[T], out G:bval[T])

succeeds [once].

predicate not(in NG:bval[T], out G:bval[T])

succeeds [once].

predicate sat(in G:bval[T]).

collection and_all(in G:bval[T], out MG:bval[T]).

collection or_all(in G:bval[T], out MG:bval[T]).

2.4 Interprocedural Analysis

Interprocedural analysis in Saturn is a fixpoint computation. When a

Calypso program runs on a source function, it both queries and updates
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the predicate instances in various session instances. If the Calypso

run on one function queries one session instance, and a later run on

another function updates that same session instance, the first function

will have to be reanalyzed. For example, consider running the Calypso

program from Section 2.1.5 to generate the abort function session on

the following C program:

void foo() { bar(); }

void bar() { abort(); }

If we run the program on bar first, we will add the predicate instance

abort function("bar")->abort(). When we then run on foo we

will also add abort function("foo")->abort() and reach the desired

fixpoint.

However, if we run the program on foo first, then since the session

abort function("bar") is initially empty we will not add the instance

abort function("foo")->abort(). When we then run on bar we will

add abort function("bar")->abort(), changing a session instance

the analysis of foo depended on and necessitating a reanalysis of foo.

Reanalyzing foo will add abort function("foo")->abort(), again

reaching the desired fixpoint.

We express interprocedural analysis in Saturn as a worklist algo-

rithm using the following definitions.

• s ∈ Sess: A session, a map from session instances to sets of

predicate instances.

• k ∈ SessInst: A session instance, a key in some session. The

map isess : SessInst ⇒ Sess gets the session each instance is

a key in (this is just the identifier portion of the instance — an

instance cannot be a key for multiple sessions).
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• p ∈ CLP : A compiled Calypso program. The map psess :

CLP ⇒ Sess indicates the session over which the program should

be run, as specified by an analyze session name(...) directive

in the program (Section 2.2).

The worklist algorithm is as follows:

1. Take as input the initial sessions S ∈ 2Sess for the program syn-

tax and any other previously computed information, and a set of

programs P ∈ 2CLP to cofixpoint. For each program p ∈ P , the

session psess(p) must be in S.

2. Let W ∈ 2CLP×SessInst be the worklist. The items in W are

Calypso programs and the session instances to run them over

(typically cil body(FN) for some function FN). For each p ∈ P

and k ∈ keys(psess(p)) add (p, k) to W .

3. Let D ∈ SessInst ⇒ 2CLP×SessInst be the dependency map in-

dicating, for each session instance, which worklist items queried

that instance while they were running. D initially maps all in-

stances to the empty set.

4. Remove some (p, k) from W . Run p over k by loading all predicate

instances in (isess(k))[k] and fully executing all rules in p. For any

session instance kr which was queried, add (p, k) to D[kr]. Then,

for any session instance kw which had new predicates added, for

all (p′, k′) ∈ D[kw] add (p′, k′) to W .

5. Repeat step 4 until W is empty.
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2.4.1 Implementation and Distributed Analysis

Calypso programs take a long time to run on multi-million line pro-

grams, due mostly to the complexity of the analyses but also to the

need to handle each function separately and the slow speed of the Ca-

lypso interpreter vs. a language compiled to native code. This is more

than offset by distributing the interprocedural analysis over a computer

cluster, a process which is made easier by the highly parallel nature of

the interprocedural worklist algorithm.

All the analysis runs we will report were performed on a 100 core

cluster, though we normally use only half the cluster for any single

analysis. One core is a server that manages the worklist and controls all

access to the session data (each session is stored on disk as a Berkeley

DB database [1]). The remainder are workers that takes jobs from

the server (a Calypso program and session contents s[k]) and runs

the Calypso interpreter, querying the server for the contents of other

session instances and informing the server of any updates to make to

the sessions.

Since all session data I/O goes through the server core, the server

can easily keep track of which items should be in the worklist W and

dependency map D. This also runs the risk of making the distributed

analysis I/O bound, if the server gets bogged down answering data

requests from workers. In practice, using 50-70 cores on a switched

gigabit network we typically get between 30% and 60% efficiency (how

much of the maximum possible time each worker spent running the in-

terpreter and not doing server I/O), depending on the Calypso program

being run. For more detailed results, see Section 8.2.



Chapter 3

Memory model

All the analyses we will describe are based on a common memory model

for C, which we present in this chapter. This includes:

• A global, flow-insensitive view of memory for reasoning about the

flow of data at a broad level through the entire program.

• A local, path-sensitive view of memory for reasoning precisely

about the flow of data through the body of a single procedure or

loop body.

Different analyses will use one of the two views of memory, depend-

ing on their precision. To allow these analyses to communicate with

one another, the two views of memory use a common representation

of heap locations, access paths (Section 3.1). Sections 3.2 and 3.3 de-

scribe the two views of memory and how they model the assignments

and control flow of the program.

40
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3.1 Access Paths

The t trace type represents an access path which refers, at any partic-

ular point in the program, to a single heap location. Traces are defined

using the additional types t root for program variables, and scalar

for arithmetic formulas over integers and traces.

type t_trace ::=

root{R:t_root}

| drf{T:t_trace}

| fld{T:t_trace,F:string,C:string}

| rfld{T:t_trace,F:string,C:string}

| index{T:t_trace,Y:t_type,I:scalar}

| empty

.

type t_root ::=

arg{A:int}

| glob{G:string}

| local{L:string}

| temp{TMP:string,WHERE:string}

| return

.

type scalar ::=

s_const{N:int}

| s_trace{T:t_trace}

| s_unop{OP:unop,V:scalar}

| s_binop{OP:binop,V0:scalar,V1:scalar}

.

The interpretation of traces is as follows:

• root{R}: The stack- or statically-allocated location of a program

variable, indicated by R.
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• drf{T}: The value of trace T. The location *x for a local variable

x is drf{root{local{"x"}}}.

• fld{T,F,C}: Field F by structure type C of trace T. The location

x->f for a local variable x of type str* is:

fld{drf{root{local{"x"}}},"f","str"}.

• rfld{T,F,C}: The ’reverse’ field F by structure type C of trace

T. A common pattern in systems code is to pass around the ad-

dresses of internal structure fields, and recover the base pointer to

the structure through pointer arithmetic, e.g. the container of

macro in Linux:

// include/linux/kernel.h
#define container_of(ptr, type, member) ({ \

const typeof( ((type *)0)->member ) *__mptr = (ptr); \
(type *)( (char *)__mptr - offsetof(type,member) );})

The location container of(x, str, f) for a local variable x is

rfld{drf{root{local{"x"}}},"f","str"}. rfld and fld are

inverse functions; rfld{fld{T,F,C},F,C} is equivalent to T.

• index{T,Y,I}: The element at index I of array trace T. Y indi-

cates the type of the array elements (char, int, some structure

type, etc.) and hence the stride used. The location x[5] for a

stack-allocated array int x[10] is:

index{root{local{x}},y int,s const{5}}

The location x[5] for a local variable int *x is:

index{drf{root{local{x}}},y int,s const{5}}



CHAPTER 3. MEMORY MODEL 43

• empty: An empty trace. Traces containing empty rather than a

root{R} are relative and describe an offset between traces, rather

than a particular heap location.

Every non-relative trace T is derived via a chain of accesses from a

t root program variable R. We say here that T is rooted at R, use the

trace root predicate to find the root of any trace T if it exists.

predicate trace_root(in T:t_trace, out R:t_root)

succeeds [zero,once].

Traces can be taken apart and put back together with the trace sub

and trace compose predicates.

predicate trace_sub(in T:t_trace,

out ST:t_trace, out RT:t_trace)

succeeds [many].

predicate trace_compose(in ST:t_trace, in RT:t_trace,

out T:t_trace)

succeeds [once].

trace sub computes all the subtraces ST of T, with RT a relative trace

indicating the offset from TS to T. For example, applying trace sub

to fld{drf{root{local{"x"}}},"str","f"} (the C expression x->f)

yields:

trace_sub(...,fld{drf{root{local{"x"}}},"str","f"},empty)

trace_sub(...,drf{root{local{"x"}}},fld{empty,"str","f"})

trace_sub(...,root{local{"x"}},drf{fld{empty,"str","f"}})

trace compose computes the inverse of trace sub, producing the

original trace T from the subtrace ST and offset RT.
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3.2 Global memory model

The global memory model is a mechanism for quickly finding the reads

and writes in the program involving particular sets of access paths. For

example, where are the places in the program where a particular field is

read from? What if that field is embedded in a particular outer struct

or accessed through a particular global variable? We describe these sets

of access paths with trace locations.

3.2.1 Trace Locations

We use the t trace representation of an access path to describe sets of

locations within the program. The type t trace loc pairs a trace with

some function, global variable or structure type, and describes all heap

locations matched by that access path and function/global/structure

at any point in the program.

type t_trace_loc ::=

tl_func{FN:string,T:t_trace,CXT:t_call_context}

| tl_glob{T:t_trace}

| tl_comp{C:string,RT:t_trace}.

type t_call_context ::=

cxt_any

| cxt_call{PFN:string,PI:c_instr,PCXT:t_call_context}.

The interpretation of trace locations is as follows:

• tl func{FN,T,CXT}: Access path T rooted at an argument, re-

turn variable, local or temporary of function FN, where FN is

called within a context described by CXT. cxt any describes all

calling contexts for FN, while cxt call{PFN,PI,PCXT} describes

only those contexts when FN is called through instruction PI of
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PFN (with calling context PCXT for PFN). (c instr is the type of

syntactic call instructions)

• tl glob{T}: Access path T rooted at some global variable, as

that global is used within any function in the program.

• tl comp{C,RT}: Access path RT relative to all values used as

structure type C in any function in the program. RT does not

have a root and is based at the value empty.

Analogous to traces, trace locations have predicates trace loc sub

and trace loc compose to compute sublocations and offset traces and

compose these back together. These simply apply the trace sub or

trace compose predicates to the single trace included in the location.

predicate trace_loc_sub(in L:t_trace_loc,

out SL:t_trace_loc, out RT:t_trace)

succeeds [many].

predicate trace_loc_compose(in SL:t_trace_loc, in RT:t_trace,

out L:t_trace_loc)

succeeds [once].

At any point in the execution of the program, each heap location

that is reachable from stack or static variables (i.e. isn’t leaked) can be

represented using one or more trace locations. Consider the following

toy example:

typedef struct str {

int f;

} str;

void main()

{

foo();
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}

void foo()

{

str x;

}

When the program enters the body of foo, field x.f within foo is

represented by each of the following trace locations:

• tl_func{"foo",fld{local{"x"},"f","str"},

cxt_call{"main","call0",cxt_any}}

Identifies the field f of x when foo is called by main (the label

used for the call within main is call0).

• tl_func{"foo",fld{local{"x"},"f","str"},cxt_any}

Identifies the field f of x when foo is called by any function.

• tl_comp{"str",fld{empty,"f","str"}}

Identifies the field f of any value of type str.

An analysis could choose to abstract x.f with any of these locations.

The concern of the memory model is to capture all the assignments

and function calls that could read or write from each of these locations.

Given an arbitrary trace location, where are the points in the program

where matching heap locations could be written with new data or read

into another location?

3.2.2 Treatment of assignments and calls

For the purposes of the global memory model, assignments and call

sites both introduce data flow, with some function context information

attached. These flow edges are of the form L0 -> L1 with L0 and
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L1 both trace locations. The following rules describe how flow edges

are generated for assignments, call site argument bindings and call site

return value assigns:

• An assignment x = y in a function F where XT and YT are the

access path traces for x and y, respectively, introduces flow:

tl_func{F,YT,cxt_any} -> tl_func{F,XT,cxt_any}

• A call G(y,...) with identifier C in a function F where AT is the

trace for the argument within G (i.e. drf{root{arg{ }}}) and YT

is the trace for y introduces flow:

tl_func{F,YT,cxt_any} ->

tl_func{G,AT,cxt_call{F,C,cxt_any}}

• A call x = G(...) with identifier C in a function F where XT is

the trace for x introduces flow:

tl_func{G,drf{root{return}},cxt_call{F,C,cxt_any}} ->

tl_func{F,XT,cxt_any}

• A global static initializer x = y (y must be an address expression,

and both x and y either global variables or are at field/array

offsets from global variables). where XT and YT are the traces for

x and y, respectively, introduces flow:

tl_glob{YT} -> tl_glob{XT}
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If the type of the assignment, argument, or return value is a struc-

ture (e.g. x = y; where x and y are structures, not pointers to struc-

tures) then flow is instead introduced for each field of that structure,

transitively following any sub-structures.

Additionally, for any assignment, argument, or return value whose

source is the address of a structure’s inner field, we need to add ad-

ditional flow edges that ‘back out’ the field accesses using rfld. This

implicit flow accounts for the C programming practice of passing around

internal fields of a structure and later backing them out with the

container of macro. For a flow edge with source fld{S,F,C} and tar-

get T, add a new flow edge with source S and target rfld{T,F,C}. For

example, the assignment x = &y->g.h; leads to the following edges:

fld{fld{drf{y},g,gstr},h,hstr} -> drf{x}

fld{drf{y},g,gstr} -> rfld{drf{x},h,hstr}

drf{y} -> rfld{rfld{drf{x},h,hstr},g,gstr}

3.2.3 Matching Trace Locations

Given a particular trace location L, we need to find all the flow edges

where the source or target of the edge matches L; either L’s value is

copied to another location, or L receives a new value from another

location. A match between L and the source or target XL occurs when

the sets of access paths described by L and XL intersect. The location

match relation is defined as follows:

• Locations tl func{FN,T,CXT0} and tl func{FN,T,CXT1} match

if either CXT0 or CXT1 is a prefix of the other.

• For a trace T rooted at a global variable, tl glob{T} matches

location tl func{FN,T,CXT} for any FN and CXT.
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• tl comp{C,RT}matches any location L with a sublocation SL such

that trace loc compose(SL,RT,L) holds.

3.3 Local Memory Model

The local view of memory provides a precise path-sensitive model of a

loop-free function body’s possible behaviors — the branches it might

take, assignments it might make, and functions it might call. It does

this by computing the possible program states at each point in the func-

tion’s execution in terms of the program state at entry to the function,

in a demand-driven fashion.

When modelling the behavior of the branches and assignments, the

local memory analysis is exact; it loses no information and is maximally

precise. The only source of imprecision comes in reasoning about the

behaviors of other functions, which can influence the local analysis in

two ways: which access paths at entry to the function might alias, and

which locations might be written to by calls in the function. These

two cases are abstracted away into interface predicates to be defined

externally from the local memory analysis (Sections 3.3.5 and 3.3.6).

Program states are represented using traces for memory locations,

scalars for pointer and integer values, and a new type g guard for

boolean conditions. Type g guard is that of boolean formulas over

comparisons between scalars and unconstrained bits (see Section 3.3.5),

defined using the bval abstract type from Section 2.3.

type scalar_cmp ::=

sc_cmp{OP:binop,V0:scalar,V1:scalar}

| sc_eqz{V:scalar}

| sc_bit{B:scalar_bit}.

type g_guard = bval[scalar_cmp].
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Wherever they appear, traces always refer to the state at function

entry. For example, when referred to by another trace, scalar, or guard

at some program point P (of type pp), the trace drf{root{arg{0}}}
refers to to the initial value of the function’s first argument, regardless

of any changes to that argument at points prior to P.

There are two core predicates in the local memory analysis which

we will focus on, guard and val.

predicate guard(in P:pp, out G:g_guard)

succeeds [once].

predicate val(in P:pp, in T:t_trace,

out V:scalar, out G:g_guard)

succeeds [many].

For any program point P in the function, guard indicates the con-

dition G under which that point will be executed. For any program

point P and trace T, val indicates the possible values V of the location

represented by T at point P under any execution, and the conditions G

under which the location holds those values.

Conceptually, the possible executions of the function are satisfying

assignments for the terms in the g guard and scalar values. For each

such satisfying assignment the traversed path through the function is

the set of points whose guard condition holds under the assignment,

and at each point in that path the value of each trace is given the val

condition holding for that point and trace in the assignment.

Two invariants relate the guard and val predicates. These invari-

ants ensure that along any execution path through the function each

trace has exactly one value at each point in the path. First, the condi-

tions for the different values of a trace are pairwise disjoint after con-

junction with the point guard: if for some P and T, where guard(P,G),
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val(P,T,V0,G0), val(P,T,V1,G1) and V0 \= V1, then G ∧ G0 ∧ G1

is unsatisfiable. Second, the disjunction of the conditions for the dif-

ferent values of a trace implies the point guard: if for some P and T,

where guard(P,G) and \/val(P,T, ,XG):or all(XG,MG), then G ∧ MG

is equivalent to MG.

To illustrate how the guard and val predicates work, consider the

following example:

void foo(int *x, int *y, int q)

{

if (q != 0) {

x = y;

}

else {

}

*x = 0;

}

We comment this example with the guards as follows. *q represents

the trace drf{root{arg{2}}}, i.e. the initial value of q regardless of any

writes to q (and similarly for other traces in future examples). Inside

the if statement the guard indicates the conditions along which the

true and false branches are executed, reverting to the condition true

afterwards.

void foo(int *x, int *y, int q)

{

// true

if (q != 0) {

// *q != 0

x = y;

// *q != 0

}

else {
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// *q == 0

}

// true

*x = 0;

// true

}

The values and associated conditions for x, y, *x and *y are as

follows. Conditions which are simply true are omitted.

void foo(int *x, int *y, int q)

{

// x -> *x, y -> *y, *x -> **x, *y -> **y

if (q != 0) {

// x -> *x, y -> *y, *x -> **x, *y -> **y

x = y;

// x -> *y, y -> *y, *x -> **x, *y -> **y

}

else {

// x -> *x, y -> *y, *x -> **x, *y -> **y

}

// x -> *x [*q == 0], x -> *y [*q != 0], y -> *y

// *x -> **x, *y -> **y

*x = 0;

// x -> *x [*q == 0], x -> *y [*q != 0], y -> *y

// *x -> 0 [*q == 0], *x -> **x [*q != 0]

// *y -> 0 [*q != 0], *y -> **y [*q == 0]

}

When the assignment *x = 0 is considered, either *x or *y is up-

dated to hold the value zero, depending on whether the branch q !=

0 was taken and x was updated to refer to *y. Note that this example

assumes that x and y are not aliased, that updating *x cannot change

the value of *y and vice versa. We will first define the rules computing

guard and val without considering aliasing and the effects of function
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calls (Sections 3.3.2, 3.3.3 and 3.3.4), and will extend this definition to

handle these two cases in Sections 3.3.5 and 3.3.6.

3.3.1 Secondary Predicates

Before getting to the definitions of guard and val, we need to define

some secondary predicates which are both used while computing guard

and val and are also helpful for client analyses of the local memory

analysis.

First, we can use the following predicates to get the value of a syntax

lvalue or expression at points in the CFG.

lval(in P:pp, in LV:c_lval, out T:t_trace, out G:g_guard)

succeeds [many].

eval(in P:pp, in E:c_exp, out V:scalar, out G:g_guard)

succeeds [many].

beval(in P:pp, in E:c_exp, out BG:g_guard, out G:g_guard)

succeeds [many].

For any program point P and syntax lvalue LV, lval gives the pos-

sible traces T the lvalue can refer to and associated condition G (if the

lvalue contains no dereferences or array accesses, there will be a single

trace and the condition will be true). For any program point P and

syntax expression E, eval gives the possible values V the expression

can have and associated conditions G. beval functions in the same way

as eval, but computes the condition BG under which the value V is

non-zero.

lval, eval, and beval are implemented as descents down the syntax

tree for the lvalue/expression, querying the val predicate for all accesses

to memory. For example, consider evaluating the (q != 0) expression

in the sample code above. This expression will be encoded with the

following predicates.
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• cil exp binop(ECMP,b ne,EQ,E0, ): ECMP is a != binary op-

eration expression over expressions EQ and E0.

• cil exp lval(EQ,LVQ): Expression EQ reads the value of the

lvalue LVQ.

• cil lval var(LVQ,QVAR,QOFF), cil off none(QOFF): Lvalue

LVQ represents QVAR, the variable for the third argument, without

any field/array offset.

• cil exp const(E0,C0), cil const int(C0, ,0): E0 is an ex-

pression for the integer constant zero.

The relevant rules and their descriptions for deriving the instances

matching beval(P,ECMP, , ) from these input predicates are as fol-

lows.

1. Get the condition for a comparison binary operation by evaluating

the left and right sides with eval and using the id g predicate

(Section 2.3) to produce a boolean formula for that leaf condition.

beval(P,E,BG,G) :-

cil_exp_binop(E,OP,LE,RE,_),

eval(P,LE,LV,LG), eval(P,RE,RV,RG),

and(LG,RG,G), id_g(sc_cmp{OP,LV,RV},BG).

2. Evaluate an lvalue expression by getting the trace the lvalue refers

to with lval, and getting the current value of that trace with val.

eval(P,E,V,G) :-

cil_exp_lval(E,LV),

lval(P,LV,T,LG), val(P,T,V,VG), and(LG,VG,G).
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3. Get the trace a variable lvalue refers to using the var trace auxil-

iary predicate, which associates a t root value with each program

variable.

lval(P,LV,root{R},G) :-

cil_lval_var(LV,X,OFF), cil_off_none(OFF),

var_trace(X,R), bool_g(true,G).

4. Get a constant scalar value for each integer constant expression.

eval(P,E,s_const{N},G) :-

cil_exp_const(E,C), cil_const_int(C,_,N),

bool_g(true,G).

Applying these rules from the bottom up to the predicate instances

for q != 0 gives us the following predicates, in turn:

eval(P,E0,s_const{0},true)

lval(P,LVQ,root{arg{2}},true)

eval(P,EQ,s_trace{drf{root{arg{2}}}},true)

beval(P,ECMP,sc_cmp{b_ne,s_trace{drf{root{arg{2}}}},

s_const{0}},true)

We get a single beval result for the outer q != 0 expression, for

the condition where the trace drf{root{arg{2}}} (the initial value of

q) is not zero. If q could have multiple values at the point of the q !=

0, (e.g. there was an assignment to q along some but not all incoming

paths), there would be multiple beval results.

Two additional secondary predicates are not used directly by the

memory analysis itself, but by client analyses.

inst_trace(in I:c_instr, in P:pp, in CT:t_trace,

out V:scalar, out G:g_guard)
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succeeds [many].

convert_trace(in P:pp, in T:t_trace,

out V:scalar, out G:g_guard)

succeeds [many].

All traces, scalars, and guards computed by the local memory anal-

ysis are local to the currently analyzed function; they are expressed in

terms of that function’s input state. To do interprocedural analysis a

client must be able to translate traces, scalars, and guards expressed for

one function into corresponding values expressed for another function.

For a call instruction I at point P, predicate inst trace translates a

trace CT relative to the entry state of the callee into its possible values

V relative to the entry state of the caller. This is a simple translation:

drf{arg{A}} traces are translated to the value of argument A at the

call site, and for other drf{T}, T is translated to new possible traces

T’, and the val predicate used to get the values of those T’ traces at

point P.

Predicate convert trace is the same as inst trace, except for the

special casing of drf{arg{A}} traces. This has the effect of converting

a trace relative to some point P (the representation used by the global

memory analysis) into a value relative to the entry state of the current

function.

3.3.2 Computing guard(P,G)

The guard for a point is the condition on the function’s input state

where that point is reached during the function’s execution. Reachabil-

ity is over the control flow graph which we defined in Section 2.2.2. We

define a new predicate cfg edge as the union of all the branch/call/set

edges within the CFG.
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predicate cfg_edge(P0:pp, P1:pp).

cfg_edge(P,P0) :- cfg_branch(P,P0,_,_).

cfg_edge(P,P1) :- cfg_branch(P,_,P1,_).

cfg_edge(P0,P1) :- cfg_call(P0,P1,_).

cfg_edge(P0,P1) :- cfg_set(P0,P1,_,_).

Now, for each CFG edge there is an associated condition under

which the first point jumps to the second point, which we will store in

the edge cond predicate. For branches, we merge the possible values of

the expression E into a single condition MG, and use MG as the condition

on the true branch and !MG on the false branch. For non-branches, the

edge cond condition is just true.

predicate edge_cond(P0:pp, P1:pp, G:g_guard).

predicate one_beval(in P:pp, in E:c_exp, out G:g_guard)

succeeds [many].

one_beval(P,E,MG) :- beval(P,E,BG,G), and(BG,G,MG).

predicate merge_beval(in P:pp, in E:c_exp, out G:g_guard).

succeeds[once].

merge_beval(P,E,MG) :- \/one_beval(P,E,G):or_all(G,MG).

edge_cond(P0,P1,G) :-

cfg_branch(P0,P1,_,E), merge_beval(P,E,G).

edge_cond(P0,P1,G) :-

cfg_branch(P0,_,P1,E), merge_beval(P,E,NG), not(NG,G).

edge_cond(P0,P1,G) :-

cfg_edge(P0,P1), ~cfg_branch(P0,_,_,_), bool_g(true,G).

For any path in the CFG to an intermediate point, that path will

be taken during execution of the function iff the conjunction of the

edge cond edges along that path holds at entry. The guard at a point

P is the disjunction of this conjunction over all paths to P.
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An equivalent definition is that the guard at P is the disjunction, for

all predecessor points P0, of the conjunction of edge cond(P0,P,EG)

and guard(P0,G0) (which is encapsulating the condition for all paths

reaching P0). This value is easily computed.

predicate gmerge(in P:pp, out G:g_guard).

guard(P,MG) :- \/gmerge(P,G):or_all(G,MG).

gmerge(P,G) :-

cfg_entry(P), bool_g(true,G).

gmerge(P1,G) :-

edge_cond(P0,P1,EG), guard(P0,G0), and(G0,EG,G).

3.3.3 Computing Edge Guards

One tricky thing about the val predicate is that the conditions in

val and in guard, while computed each using the other, are otherwise

independent from one another. If for some P and T, guard(P,G) and

val(P,T, ,VG), VG does not have to imply G. This was shown in the

earlier example with val, where x -> *y under condition true at the

end of the if statement’s true branch, and this condition was refined

to *q != 0 only at the join point after the if.

While it would be valid to have the above condition VG always imply

G, enforcing this may cause a blowup in the size of the conditions in val

and resulting performance degradation. So we would like to keep the

conditions in val as general and simple as possible while still ensuring

the conditions VG of each trace are pairwise disjoint after intersection

with G.

We use a refinement predicate eguard(P0,P1,G,NG) to simplify the

val guards. eguard computes a guard NG from G such that, where

guard(P0,G0), guard(P1,G1), and edge cond(P0,P1,EG), NG ∧ G1⇔
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G ∧ G0 ∧ EG. For the example discussed above, the refinement at the

if from true to *q != 0 satisfies this property.

For points P1 which are not join points and have only the single

incoming edge, it suffices to choose NG = G since G1 itself is G0 ∧ EG.

For join points, we choose NG = G ∧(¬ G1 ∨( G0 ∧ EG )), which satisfies

the biconditional and in practice allows considerable simplification in

the val guards.

predicate eguard(in P0:pp, in P1:pp, in G:g_guard,

out EG:g_guard)

succeeds [once].

predicate cfg_join(P:pp).

cfg_join(P) :- cfg_edge(P0,P), cfg_edge(P1,P), P0\=P1.

eguard(P0,P1,G,G) :- ~cfg_join(P1).

eguard(P0,P1,G,EG) :- cfg_join(P1),

guard(P0,G0), guard(P1,G1), edge_cond(P0,P1,ECG),

not(G1,GNOT), and(G0,ECG,GAND), or(GNOT,GAND,GOR),

and(G,GOR,EG).

3.3.4 Computing val(P,T,V,G)

As with guard, we will compute val by accumulating all the possible

values along each incoming edge to a point, and taking their disjunction.

This is performed with the vmerge predicate, analogous to gmerge.

Since, again, traces in the local memory model are expressed in terms

of the function’s entry state, at the entry point each trace T always

points to trace drf{T}.

predicate vmerge(in P:pp, in T:t_trace,

out V:scalar, out G:g_guard).

val(P,T,V,NMG) :-

vmerge(P,T,V,_), \/vmerge(P,T,V,G):or_all(G,MG).
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vmerge(P,T,s_trace{drf{T}},G) :-

cfg_entry(P), bool_g(true,G).

In this section, recall, we will compute val while only considering

the effects of direct assignments, and not aliasing or call site side effects.

Thus, we only need to care about the cfg set edges and the lvalues

they update. If the lvalue contains dereferences, it might refer to one of

several traces depending on the previous assignments in the function.

Recall the earlier example, where the update to *x could update either

the trace *x or *y, depending on whether x had been assigned y ear-

lier. We capture the possible direct updates to traces with the assign

predicate. As with val, a trace might be updated to different values at

a point under disjoint conditions.

predicate assign(P:pp, T:t_trace, V:scalar, G:g_guard).

assign(P,T,V,G) :- cfg_set(P,_,LV,E),

lval(P,LV,T,G0), eval(P,E,T,G1), and(G0,G1,G).

Generating the assign predicate on the example program yields the

following assignments:

void foo(int *x, int *y, int q)

{

if (q != 0) {

x = y; // x := *y

}

else {

}

*x = 0; // *x := 0 [*q == 0], *y := 0 [*q != 0]

}

Now, all we have to do to compute vmerge is, for each edge and

trace, to account for the cases where the trace either is assigned a new
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value, or is not assigned at all and keeps its old value. The following

two rules deal with these cases. These are the only rules which will

change when we extend val to handle aliasing and call site side effects.

vmerge(P1,T,V,NG) :- cfg_edge(P0,P1),

assign(P,T,V,G), eguard(P0,P1,G,NG).

vmerge(P1,T,V,NG) :- cfg_edge(P0,P1),

\/assign(P0,T,_,AG):or_all(AG,MAG), not(MAG,NMAG),

base_val(P0,T,V,VG), and(NMAG,VG,G), eguard(P0,P1,G,NG).

3.3.5 Handling Aliasing

The handling of val we have shown in the example thus far assumes

that x and y are not aliased, that *x and *y refer to different heap

locations. To be sound, val needs to do better, to consider possible

aliasing between traces when handling assignments. We introduce an

unconstrained boolean variable alias(*x,*y) that is true iff x aliases

y (this is equivalent to the guard *x == *y).

When this aliasing might occur, the computed val predicates are

as follows. The only differences vs. the use of val without aliasing are

the possible values of *x and *y at the CFG exit point.

void foo(int *x, int *y, int q)

{

// x -> *x, y -> *y, *x -> **x, *y -> **y

if (q != 0) {

// x -> *x, y -> *y, *x -> **x, *y -> **y

x = y;

// x -> *y, y -> *y, *x -> **x, *y -> **y

}

else {

// x -> *x, y -> *y, *x -> **x, *y -> **y

}
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// x -> *x [*q == 0], x -> *y [*q != 0], y -> *y

// *x -> **x, *y -> **y

*x = 0;

// x -> *x [*q == 0], x -> *y [*q != 0], y -> *y

// *x -> 0 [*q == 0 || alias(*x,*y)]

// *x -> **x [*q != 0 && !alias(*x,*y)]

// *y -> 0 [*q != 0 || alias(*x,*y)],

// *y -> **y [*q == 0 && !alias(*x,*y)]

}

To determine whether two traces are aliased, the local memory anal-

ysis uses the predicate trace alias, which takes as input two traces

and produces the condition under which they alias (or fails if they can

never alias).

predicate trace_alias(in T0:t_trace, in T1:t_trace,

out G:g_guard)

succeeds [zero,once].

Predicate trace alias is used as an oracle by the memory analysis;

it is not actually defined by the memory analysis, and can be instan-

tiated differently by different clients, depending on their level of need

for soundness and precision. The trace alias rules we will use for

subsequent analyses are described in Section 5.3.1.

Despite leaving the aliasing rules abstract for now, there are some

general principles reasonable rules will follow, pertaining to the previous

and future examples:

• Any trace T always aliases itself.

• Stack and global variables which never have their address taken

never alias any other trace.
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To account for aliasing within assignments, instead of using the

direct update predicate assign, we use a demand-driven predicate

assign alias which indicates the condition where a trace T aliases

some trace XT that is directly written (T might be equal to XT).

predicate assign_alias(in P:pp, in T:t_trace,

out V:scalar, out G:g_guard).

assign_alias(P,T,V,G) :-

assign(P,XT,V,XG), trace_alias(T,XT,AG), and(AG,XG,G).

Predicate assign alias has the same signature as assign but han-

dles even indirect assignments through aliasing, so to capture pos-

sible aliasing while computing vmerge we just replace assign with

assign alias:

vmerge(P1,T,V,EG) :- cfg_edge(P0,P1),

assign_alias(P0,T,V,G), eguard(P0,P1,G,EG).

vmerge(P1,T,V,MG) :- cfg_edge(P0,P1),

\/assign_alias(P0,T,_,AG):or_all(AG,MAG), not(MAG,NMAG),

val(P0,T,V,VG), and(NMAG,VG,G), eguard(P0,P1,G,EG).

3.3.6 Handling Calls

The state of memory within the function can be affected by either

assignments or calls. As shown previously, we will model the regular

assignments exactly, using guards to case split depending on whether

the left side of the assignment aliases various traces. For some calls

we will do the same thing, adding assign instances to exactly model

their side effects. In general, though, we cannot model the effects of

calls with such precision. In a large program such as Linux most calls

can have side effects on thousands of heap locations. It is not feasible
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to even fully represent this set of locations, let alone describe exactly

what actions the call takes on them.

Thus, we introduce a second interface predicate trace clobber

which, along the same lines as trace alias, allows client analyses to

specify the points at which a call might update a trace to some un-

known new value. We use a new type of trace uc sum{I,P,T} for the

unconstrained result of the call I at point P clobbering the value of

trace T. While this new trace is still determined by the function’s entry

state (provided the program is deterministic), we have no idea which

location it refers to without delving into the behavior of the call at I.

predicate trace_clobber(in I:c_instr, in P:pp, in T:t_trace).

type t_trace ::= ... | uc_sum{I:c_instr,P:pp,T:t_trace}.

As with trace alias, we leave the rules for trace clobber abstract

for now, along with the cases where we will add assign instances for

calls, and revisit them in Section 5.3.2.

With clobbering, we now need to consider three cases instead of two

for the value of a trace after a CFG edge. The trace may be updated

via assign alias, may keep its old value, or may be clobbered by a

call. The latter two cases are encapsulated by the base val predicate;

T is clobbered iff the edge leaving P is a call for which trace clobber

holds on T.

predicate base_val(in P:pp, in T:t_trace,

out V:scalar, out G:g_guard).

base_val(P,T,V,true) :- icall(P,_,I),

trace_clobber(I,P,T), V = s_trace{uc_sum{I,P,T}}.

base_val(P,T,V,G) :- icall(P,_,I),

~trace_clobber(I,P,T), val(P,T,V,G).

base_val(P,T,V,G) :- ~icall(P,_,_), val(P,T,V,G).
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When we compute vmerge, the case where T is updated by a di-

rect assignment takes precedence over clobbering; adding an assign

edge for a call simply provides more detailed information than the

trace clobber. Thus, we use assign alias in the same way, and

just substitute base val for val when considering the condition where

T is not aliased with any directly updated trace.

vmerge(P1,T,V,EG) :- cfg_edge(P0,P1),

assign_alias(P0,T,V,G), eguard(P0,P1,G,EG).

vmerge(P1,T,V,MG) :- cfg_edge(P0,P1),

\/assign_alias(P0,T,_,AG):or_all(AG,MAG), not(MAG,NMAG),

base_val(P0,T,V,VG), and(NMAG,VG,G), eguard(P0,P1,G,EG).
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Function Pointer Analysis

Pretty much any sound interprocedural analysis requires a complete call

graph, which gives an overapproximation of the possible targets of each

indirect call. For each call to some arbitrary expression, what are the

actual functions to which that function could refer at runtime? Func-

tion pointers tend to be used in programs in a straightforward manner,

assigning them to plain variables, arrays, or fields, but rarely using

them in a more complex fashion, such as casting a function pointer to

some other type or creating a heap-allocated buffer of function pointers.

We want an analysis that can characterize the usual behaviors precisely,

and fall back to manual annotation for the complex behaviors.

The overall effectiveness of this analysis is determined by the amount

of complex behavior it cannot capture that is actually present in the

analyzed program, and hence the annotation burden it requires. As

we will see in Section 9.2, this burden is small — 46 annotations for

100,000 indirect call edges — and the analysis presents a good trade/off

between its own complexity and the annotations it requires.

66
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4.1 Example

Recall the example from Section 1.2.

// drivers/media/common/saa7146_fops.c
void saa7146_buffer_timeout(unsigned long data)
{

...
}

// drivers/media/common/saa7146_video.c
static void video_init(struct saa7146_dev *dev,

struct saa7146_vv *vv)
{

vv->video_q.timeout.function = saa7146_buffer_timeout;
...

}

// kernel/timer.c
static inline void __run_timers(tvec_base_t *base)
{

struct timer_list *timer;
...
while (...) {

...
while (!list_empty(head)) {

...
timer = list_entry(head->next,struct timer_list,entry);
fn = timer->function;
...
fn(data);
...

}
}
...

}

We are ultimately interested both in what are the possible callers

of saa7146 buffer timeout, and what are the possible callees of the
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indirect call fn(data) in run timers. By identifying the possible

targets for the call fn(data), as well as the possible targets for all other

indirect calls in the kernel, we will have complete call graph information

which lets us answer both questions conservatively.

We can find the targets for fn(data) just by following fn back

through the assignments in the program. The value of fn is the same

as whatever it was written with earlier, timer->function. So what

are the possible values of timer->function? We could answer this

by following timer itself back through the (very complex) code in

the kernel which maintains lists of pending timers, back to the cor-

responding calls to add timer which scheduled the timer, but there

is an easier way. Ignore timer itself, and just look for assignments

to the function field of any timer list in the program. This is

easy to do and will find the assignment of saa7146 buffer timeout

to vv->video q.timeout.function within video init.

For all other writes to the function field, if that write is of a par-

ticular function then that function is now a potential target of the

fn(data) call in run timers, and if that write is not of a particu-

lar function, we will need to continue following the written value back

through the assignments in the program. An example of where this

occurs is inet csk init xmit timers.

// net/ipv4/inet_connection_sock.c
void inet_csk_init_xmit_timers(struct sock *sk,

void (*retransmit_handler)(unsigned long),
void (*delack_handler)(unsigned long),
void (*keepalive_handler)(unsigned long))

{
struct inet_connection_sock *icsk = inet_csk(sk);

init_timer(&icsk->icsk_retransmit_timer);
init_timer(&icsk->icsk_delack_timer);
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init_timer(&sk->sk_timer);

icsk->icsk_retransmit_timer.function = retransmit_handler;
icsk->icsk_delack_timer.function = delack_handler;
sk->sk_timer.function = keepalive_handler;

icsk->icsk_retransmit_timer.data =
icsk->icsk_delack_timer.data =

sk->sk_timer.data = (unsigned long)sk;

icsk->icsk_pending = icsk->icsk_ack.pending = 0;
}

The function of a timer list may be any of the function pointers

passed to inet csk init xmit timers; we have to look at all call sites

to this function. inet csk init xmit timers is called in two places,

by dccp init xmit timers and tcp init xmit timers.

static void dccp_write_timer(unsigned long data);
static void dccp_keepalive_timer(unsigned long data);
static void dccp_delack_timer(unsigned long data);

// net/dccp/timer.c
void dccp_init_xmit_timers(struct sock *sk)
{

inet_csk_init_xmit_timers(sk, &dccp_write_timer,
&dccp_delack_timer,
&dccp_keepalive_timer);

}

static void tcp_write_timer(unsigned long);
static void tcp_delack_timer(unsigned long);
static void tcp_keepalive_timer (unsigned long data);

// net/ipv4/tcp_timer.c
void tcp_init_xmit_timers(struct sock *sk)
{

inet_csk_init_xmit_timers(sk, &tcp_write_timer,
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&tcp_delack_timer,
&tcp_keepalive_timer);

}

Both of these pass specific functions to inet csk init xmit timers,

so after recognizing dccp write timer, dccp keepalive timer, and so

forth as possible targets for the fn(data) call in run timers, there

is no further propagation work to do.

4.2 Algorithm

The output of the function pointer analysis is a set of possible callees

for the indirect calls of the analyzed program. We can store this infor-

mation in a summary database sum funptr.

session sum_funptr(FN:string,I:c_instr)

containing [sindirect].

predicate sindirect(CFN:string).

The fact sum funptr(FN,I)->sindirect(CFN) means that indirect

call I within function FN might have CFN as a callee. sum funptr(FN,I)

might contain many such facts, and if the summary is conservative then

together these facts describe a superset of all possible callees which

might be targeted by this indirect call at runtime.

In order to get such a conservative approximation of the call graph,

we will follow the propagation shown in the previous example. This

propagation needs to keep track of which trace locations might flow

to which indirect calls in the analyzed program. We can then follow

these trace locations backward through assignments until we reach the

original function assignment.



CHAPTER 4. FUNCTION POINTER ANALYSIS 71

This information is stored with an intermediate summary database

sum funptr prop, storing for each trace location the set of indirect calls

which that location might flow to through assignments.

session sum_funptr_prop(L:t_trace_loc) containing [sref].

predicate sref(FN:string,I:c_instr).

We do not, however, consider arbitrary trace locations during prop-

agation, and will restrict the possible entries in sum funptr prop both

to constrain the search space and to avoid issues with aliasing (for prop-

agation over arbitrary trace locations see Chapter 5). Specifically, the

locations are restricted to either:

• tl func{ ,drf{root{R}},cxt any}, where R is a function argu-

ment, local, or temporary variable.

• tl glob{drf{root{ }}}, a global variable (typically a static ar-

ray of function pointers).

• tl comp{C,drf{fld{empty, ,C}}}, the value of a structure field.

Additionally, locations in sum funptr prop must have a static type

identifying them as function pointers, e.g. ruling out variables and fields

of type void* or long.

Now, the propagation algorithm is as follows:

1. For each indirect call I within a function FN, get a location L fit-

ting our restrictions for the access path used to invoke the call; fail

if there is no such L. Add sref(FN,I) to sum funptr prop(L).

2. For each flow edge L -> NL (see Section 3.2.2) where NL matches

some NL’ and L is a function variable CFN, then for each sref(FN,I)
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in sum funptr prop(NL’), add a predicate instance for the in-

direct call sum funptr(FN,I)->sindirect(CFN). This may in-

troduce new flow edges for the indirect call site’s argument and

return variable bindings.

3. For each flow edge L -> NL where NL matches some NL’ and

sum funptr prop(NL’) is not empty, get a location L’ fitting

our restrictions which matches L; fail if there is no such L’ and L

is not an actual function variable. Insert each predicate instance

in sum funptr prop(NL’) into sum funptr prop(L).

4. For each flow edge L -> NL, if the dereference of L (L composed

with drf{empty}) matches some L’ and sum funptr prop(L’) is

not empty, then fail. This rules out cases where a variable or field

storing a function pointer has its address taken.

5. As the entries in sum funptr prop grow, fixpoint the previous

rules.

If the fixpoint is reached without failures, the final sum funptr is

a conservative approximation of the indirect call graph. If failures are

encountered on any locations L, the call graph may be incomplete for

any call sites FN/I such that sum funptr prop(L)->sref(FN,I) holds.

In these cases we will fall back on manual annotation (see Section 9.2

for details of these annotations).



Chapter 5

Escape Analysis

A couple of symmetric questions (among many others) come up while

perusing large code bases.

• When a value is read out of the heap and used, where did that

value come from?

• When a value is written into the heap, where will that value

eventually be used?

The escape analysis described here tries to answer these two ques-

tions with a fast, simple and, in the common case, accurate algorithm.

We need a way to match up writes with their corresponding reads,

and then transitively follow these assignment edges either forward or

backward (flow-insensitively) through the program.

5.1 Example

Recall the timer list problem discussed in Section 1.2. We are inter-

ested in where the saa7146 buffer timeout function might be called,

73
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after being assigned to the function field of a timer list. One call

site we would like to exclude is in ctnetlink del conntrack.

// net/ipv4/netfilter/ip_conntrack_netlink.c
static int
ctnetlink_del_conntrack(...)
{

struct ip_conntrack *ct;

...
ct = tuplehash_to_ctrack(h);
...

if (del_timer(&ct->timeout))
ct->timeout.function((unsigned long)ct);

ip_conntrack_put(ct);
return 0;

}

While we were able to prove that ctnetlink del conntrack can-

not call saa7146 buffer timeout due to incompatibility between the

structures the different timer list’s are nested in, we are more gener-

ally interested in which functions ctnetlink del conntrack can call.

If we can find a narrow set of targets for the call site, we can refine the

results of the function pointer analysis accordingly, and will handle the

comparison task not just for the saa7146 buffer timeout timer list

but all other timer list’s as well.

We can find a narrower set of targets for the ct->timeout.function

call by following the function pointer backwards, in the same man-

ner as the function pointer analysis but at a more precise level of

granularity. Instead of considering all values of type timer list and

what the function field is assigned, we will consider all values of type

ip conntrack and what the timeout.function field is assigned.
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There is only a single place in Linux where the timeout.function

field is directly assigned, in ip conntrack alloc.

// net/ipv4/netfilter/ip_conntrack_core.c
static void death_by_timeout(unsigned long ul_conntrack)
{

struct ip_conntrack *ct = (void *)ul_conntrack;
...

}

// net/ipv4/netfilter/ip_conntrack_core.c
struct ip_conntrack *ip_conntrack_alloc(...)
{

struct ip_conntrack *conntrack;
...

conntrack = kmem_cache_alloc(ip_conntrack_cachep, GFP_ATOMIC);
...

init_timer(&conntrack->timeout);
conntrack->timeout.data = (unsigned long)conntrack;
conntrack->timeout.function = death_by_timeout;

...
}

From this can we conclude that timeout.function can only point

to death by timeout? No. As seen here, other functions such as

init timer receive the address of conntrack->timeout, such that they

have a timer list* which could be used to write timeout.function

indirectly. To be sure we have captured all writes to timeout.function,

we have to consider the possibility of such indirect writes.

There are two strategies we can use to check for indirect writes.

First, look at init timer and all other points where &timeout is taken,

and follow the value holding that address through the program, see-

ing if its function field is written anywhere. Second, look at all
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writes to the function field of any timer list, and figure out which

of those timer list’s might have come from the timeout field of an

ip conntrack.

These strategies correspond to two directions in a graph search,

looking for paths from sources (points where &timeout is taken) to sinks

(points where some function field is written). Which strategy will be

more successful depends on the vagaries of the particular structure and

code base examined; how much code initializes or uses the structure,

and how complicated that code is. We want a mechanism for escape

analysis that supports both, so that in subsequent analyses we can use

either strategy as appropriate.

5.1.1 Addresses of the timeout field

Our first strategy is to figure out if there is any point where &timeout

is taken, such that that address might be used to subsequently write to

timeout.function. We have to find all the places where &timeout is

taken and do a forward escape propagation to find all the places where

that address might be used, and see what values function is written

with.

Fortunately, the original point we noticed &timeout being taken,

init timer, is pretty straightforward, and does not write the function

field nor pass the timer list on to any other function or heap location.

// kernel/timer.c
void fastcall init_timer(struct timer_list *timer)
{

timer->entry.next = NULL;
timer->base = per_cpu(tvec_bases, raw_smp_processor_id());

}

Unfortunately, there are more complicated cases than init timer.
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ip conntrack confirm might call add timer with &timeout, which

is the kernel function which actually schedules the timer list for sub-

sequent execution.

// net/ipv4/netfilter/ip_conntrack_core.c
int
__ip_conntrack_confirm(struct sk_buff **pskb)
{

struct ip_conntrack *ct;
ct = ip_conntrack_get(*pskb, &ctinfo);

...
if (...) {

...
ct->timeout.expires += jiffies;
add_timer(&ct->timeout);
...

}
...

}

add timer will store the timer in the kernel data structures which

manage pending timers, and will eventually be removed by run timers

and run. The function and data fields will not be modified through-

out the course of this, but we will need to show that in order to es-

tablish that death by timeout is the only possible target for some

timeout.function field of an ip conntrack.

// include/linux/timer.h
static inline void add_timer(struct timer_list *timer)
{

BUG_ON(timer_pending(timer));
__mod_timer(timer, timer->expires);

}

// kernel/timer.c
int __mod_timer(struct timer_list *timer, unsigned long expires)
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{
tvec_base_t *base;
...
base = lock_timer_base(timer, &flags);

...
timer->expires = expires;
internal_add_timer(base, timer);

}

// kernel/timer.c
static void internal_add_timer(tvec_base_t *base,

struct timer_list *timer)
{

unsigned long expires = timer->expires;
unsigned long idx = expires - base->timer_jiffies;
struct list_head *vec;

if (idx < TVR_SIZE) {
int i = expires & TVR_MASK;
vec = base->tv1.vec + i;

} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
int i = (expires >> TVR_BITS) & TVN_MASK;
vec = base->tv2.vec + i;

} else if (...) {
...

}

list_add_tail(&timer->entry, vec);
}

Calling add timer will have the effect of placing the input timer list

onto a doubly-linked list in a tvec base t structure.

// kernel/timer.c

typedef struct tvec_s {
struct list_head vec[TVN_SIZE];

} tvec_t;
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typedef struct tvec_root_s {
struct list_head vec[TVR_SIZE];

} tvec_root_t;

struct tvec_t_base_s {
spinlock_t lock;
struct timer_list *running_timer;
unsigned long timer_jiffies;
tvec_root_t tv1;
tvec_t tv2;
tvec_t tv3;
tvec_t tv4;
tvec_t tv5;

} ____cacheline_aligned_in_smp;

typedef struct tvec_t_base_s tvec_base_t;

The tvec base t structure is the core data structure used by the

kernel to manage pending timers. This consists of five arrays of doubly-

linked lists, at fields tv1 through tv5 of the tvec base t. These vec-

tors were filled in by internal add timer, and will be read out by

run timers.

// kernel/timer.c
static inline void __run_timers(tvec_base_t *base)
{

struct timer_list *timer;

while (time_after_eq(jiffies, base->timer_jiffies)) {
struct list_head work_list = LIST_HEAD_INIT(work_list);
struct list_head *head = &work_list;
int index = base->timer_jiffies & TVR_MASK;

...
list_splice_init(base->tv1.vec + index, &work_list);
while (!list_empty(head)) {

void (*fn)(unsigned long);
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unsigned long data;

timer = list_entry(head->next,struct timer_list,entry);
fn = timer->function;
data = timer->data;

set_running_timer(base, timer);
detach_timer(timer, 1);

...
fn(data);
...

}
}

set_running_timer(base, NULL);
}

run timers splices lists of timers from the tvec base t into its

local work list, scans through those lists and runs the timers, without

modifying the function or data fields. There are a few other similar

functions which walk the tvec base t lists, and which also do not touch

the function and data fields. We must be able to show that these are

the only functions which might use the timer list which was originally

inserted via add timer. In order to do this, we need some reasonably

precise model of what these lists are doing.

5.1.2 Writes to the function field

It was a lot of work to follow that timeout field through the internal

timer structures of the kernel, just to see if they led to any writes of the

function field. Our second strategy will avoid this by looking at writes

to the function field itself, and see which of those could have come from

the timeout field. While there are nearly 600 places in Linux where
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the function field is written, the vast majority of this is initialization

code, and avoids the hairy lists and arrays used by run timers.

In fact, of all those writes to the function field, it is trivial to

show that all but five of them cannot alias timeout.function — they

directly write to the function field of a timer list either embedded

in a structure other than ip conntrack (e.g. recall the vbi init and

video init functions from Section 1.2), or to the function field of a

statically allocated global timer list.

One of the five remaining writes is ip conntrack alloc itself, which

fills in timeout.function directly with death by timeout. The re-

maining four are utility functions which wrap the initialization of the

function and data fields of a timer list, such as setup timer.

// include/linux/timer.h
static inline void setup_timer(struct timer_list * timer,

void (*function)(unsigned long),
unsigned long data)

{
timer->function = function;
timer->data = data;
init_timer(timer);

}

Whenever setup timer and the other three utility functions are

called, they are passed the address of either some timer list em-

bedded in a structure, or the address of a statically allocated global

timer list. When we do a backward propagation from the first argu-

ment to setup timer, we will find all these locations and be able to

show they cannot alias the timeout field of an ip conntrack.

void br_stp_port_timer_init(struct net_bridge_port *p)
{

setup_timer(&p->message_age_timer,
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br_message_age_timer_expired,
(unsigned long) p);

setup_timer(&p->forward_delay_timer,
br_forward_delay_timer_expired,
(unsigned long) p);

setup_timer(&p->hold_timer,
br_hold_timer_expired,
(unsigned long) p);

}

This second strategy requires more work than the first strategy to

look at all the initializatinon code for a timer list, but has the advan-

tage in that the code involved is much simpler and easier to understand.

However, this is not always the case and, again, in general we need to

be able to follow values both backwards and forwards through the pro-

gram.

5.2 Algorithm

The core of the escape analysis is just to compute a closure over the

assignments in the program for a particular t trace loc – construct

a set of t trace loc’s which collectively describe where the locations

identified might flow. This information is computed in a demand-driven

fashion by the escape set predicate.

type t_escape_precision.

type t_escape_state ::=

es_forward

| es_backward

| es_forward_precise{V:t_escape_precision}

| es_backward_precise{V:t_escape_precision}.
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predicate escape_set(in TR:int, in Y:t_escape_state,

in L:t_trace_loc,

out NLS:set[t_trace_loc])

succeeds [zero,once].

escape state takes an initial location L, state information Y in-

dicating whether the search is forward or backward over assignments

(and possibly some precision information on the search granularity, see

Section 5.2.1), and an exploration threshold TR. NLS is bound to a

set containing all the locations that L might flow to according to Y.

escape set may fail if the resulting set NLS is larger than the thresh-

old TR, in which case the set of reachable locations is unknown.

escape set performs a graph search that looks at one t trace loc

at a time and identifies all the flow edges in the program that are rele-

vant to that location and move its contents either forwards or backwards

into another location.

However, as we are considering arbitrary trace locations we need to

consider the indirect effects of aliasing on data flow. If we are tracking

forward the location representing x->f->g within some function, and

see an assignment y = x->f->g, we know the location has propagated

forward to y. In addition, if we see another assignment z = x->f, we

know the location has propagated forward to z->g. If we change these

assignments around, so that we see x->f->g = y, we do not propagate

to y, as we are propagating forward and are only interested in where

x->f->g is used. The same does not hold for x->f = z: this assignment

indicates x->f and z are potentially aliased and that the contents of

x->f->g could propagate forward due to some assignment a = z->g,

so we must propagate to z->g.

1. For a location L, enumerate all its sublocations SL and offset traces
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RT.

2. For each such sublocation and offset trace, find all flow in the

program either from a location matching SL into a new location

XSL, or from another location XSL into a location matching SL,

according to whether this is a forward or backward propagation.

If RT includes one or more dereferences (drf{ }), consider both

forward and backward assignments.

3. Compose XSL with RT to get the new location XL to which the

location at L is propagated.

4. Generalize XL if necessary, simplifying it to describe a superset of

access paths, and goto 1.

Generalizing trace locations allows the escape analysis to adjust

its precision in order to do potentially less work for a potential small

difference in the final results of the analysis. If location XL represents

x->f->g where the type of x is str1*, we could generalize to location

.f->g relative to values of type str1. Doing so means we would no

longer have to consider assignments over x itself, but would now have

to look at uses of all values of type str1. Similar trade-off’s exist for

other generalization possibilities, either to .g relative to whatever the

type of x->f is, or just leaving the trace x->f->g intact.

The choice of generalization heuristic can have a very large effect

on the result of escape set. Over-generalizing can degrade precision

to the point of uselessness to the client, while under-generalizing can

expand the search space to the point of intractability. The right balance

depends ultimately on the client’s own property and which parts of the

trace are actually relevant to that property. However, all the clients we

have used have been covered by one of several simple techniques.
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5.2.1 Trace Generalization

Going back to the t escape state definition:

type t_escape_state ::=

es_forward

| es_backward

| es_forward_precise{V:t_escape_precision}

| es_backward_precise{V:t_escape_precision}.

The state here encodes, alongside the forward/backward direction,

all information about how much generalization escape set should per-

form during the location space search. es forward and es backward

apply the maximal generalization: for locations that reference fields,

tl comp is used at the outermost field access, while, for locations with-

out fields, tl glob is used for global variables and all context informa-

tion is removed from arguments and locals to a tl func.

es forward precise and es backward precise use a more precise

generalization, according to the t escape precision value used.

type t_escape_precision ::=

ep_field{FLD:int}

| ep_nocontext

| ep_maximum.

Level ep field{N} generalizes to tl comp only for locations where

more than N fields are used in the trace access path, preserving the

outermost N fields, e.g. ep max field{2} will generalize x->f.g.h to

tl comp{str,.g.h} where str is the type of x->f. Level ep nocontext

never generalizes to tl comp but strips all context information from

tl func locations to reduce the search space at the expense of consid-

ering non-CFL-feasible paths in the call graph (exploring into a function
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via one call site and then back out at a different call site to the same

function). Level ep maximum never generalizes at all.

Even with this variety of generalization heuristics, there is still

rarely a single best option for a given client analysis. A strength of

this analysis is that the individual escape set queries are indepen-

dent of one another, and in trickier cases a client can try to escape

using multiple different heuristics. If escape set exploration for any

of the heuristics succeeds, the resulting set of locations is an overap-

proximation of the places the original location could flow to. If multiple

heuristics succeed, we can get the best bound as the set of traces which

are described by all the succeeding heuristics. See Section 6.5.2 for an

instance of this approach.

5.2.2 Handling Arrays and Recursive Structures

Arrays and recursion can introduce an unbounded number of access

paths which the escape analysis might need to consider. In the con-

text of our earlier example, for internal add timer we may need to

consider any array element of base->tv1.vec, and any element of

the lists stored in this array. The t trace type as presented so far

does not give us the expressiveness for this; for arrays we would con-

sider base->tv1.vec[0], base->tv1.vec[1], and so forth, and for

lists we would consider base->tv1.vec[0], base->tv1.vec[0]->next,

base->tv1.vec[0]->next->next, and so forth.

So we define new traces which represent elements chosen arbitrarily

from arrays and lists.

type t_trace ::=

...

| uk_index{T:t_trace,Y:t_type}

| uk_recurse{T:t_trace,RL:list[t_trace]}
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.

Trace uk index{T,Y} represents any arbitrarily chosen index{T,Y, }
trace, and uk recurse{T,RL} represents any arbitrarily chosen trace

reachable from T (excluding T itself) over the recursive structure back-

bone given by RL — for the list head structure, which is a doubly-

linked list with prev and next members, RL is the set:

[drf{fld{empty,"prev","list_head"}},

drf{fld{empty,"next","list_head"}}]

Returning to our earlier example, we can use uk recurse to model

the list insertions and manipulations performed by the list add tail

and list splice init called by internal add timer and run timers.

// include/linux/list.h
static inline void list_add_tail(struct list_head *new,

struct list_head *head)
{

// inlined call __list_add(new, head->prev, head);
struct list_head *prev = head->prev;
head->prev = new;
new->next = head;
new->prev = prev;
prev->next = new;

}

static inline void list_splice_init(struct list_head *list,
struct list_head *head)

{
if (!list_empty(list)) {

// inlined call __list_splice(list, head);
struct list_head *first = list->next;
struct list_head *last = list->prev;
struct list_head *at = head->next;

first->prev = head;
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head->next = first;

last->next = at;
at->prev = last;

INIT_LIST_HEAD(list);
}

}

list add tail assigns new to head->prev, which we can general-

ize to uk recurse{*head}, so that the new element becomes threaded

onto the list pointed to by head. Similarly, list splice init as-

signs list->next to head->next; since list->next is matched by

uk recurse{*list}, and head->next generalizes to uk recurse{*head},
members of list become threaded onto the list pointed to by head.

Filling out our earlier example with timer usage, we can now follow

the complete propagation of the timer list parameter to add timer

until it is read back out by run timers. The following is a single path

to run timers; there are several other similar paths.

1. tl_func{"add_timer",*timer,cxt_any}

Initial location, the first argument to add timer.

2. tl_func{"__mod_timer",*timer,cxt_call{"add_timer",cxt_any}}
-> tl_func{"__mod_timer",*timer,cxt_any}

Passed as argument to mod timer. The trace location is gener-

alized to remove the calling context.

3. tl_func{"internal_add_timer",*timer,
cxt_call{"__mod_timer",cxt_any}}

-> tl_func{"internal_add_timer",*timer,cxt_any}

Passed as argument to internal add timer. The trace location

is generalized to remove the calling context.
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4. tl_func{"list_add_tail",(*new)^entry,
cxt_call{"internal_add_timer",cxt_any}}

Internal entry field of the timer is passed to list add tail.

5. tl_func{"list_add_tail",(*next->prev)^entry,
cxt_call{"internal_add_timer",cxt_any}}

-> tl_func{"list_add_tail",uk_recurse{*next}^entry,
cxt_call{"internal_add_timer",cxt_any}}

list add tail attaches the timer’s entry to its next parameter

(the pointer to the list tail). This is generalized with uk recurse

so that the entry is now reachable via any chain of next/prev

pointers from the next parameter.

6. tl_func{"internal_add_timer",uk_recurse{*vec}^entry,cxt_any}

Propagated back out to internal add timer, using the context

on the list add tail trace location.

7. tl_func{"internal_add_timer",
uk_recurse{base->tv1.vec[i]}^entry,cxt_any}

-> tl_func{"internal_add_timer",
uk_recurse{uk_index{base->tv1.vec}}^entry,cxt_any}

-> tl_comp{"tvec_base_t",
uk_recurse{uk_index{.tv1.vec}}^entry}

Follow assignment to the local variable vec from the tv1.vec

buffer in the input base parameter. The trace location is gener-

alized to the type of base.

8. tl_func{"list_splice_init",uk_recurse{*list}^entry,
cxt_call{"__run_timers",cxt_any}}

tv1.vec element is passed as argument to list splice init by

run timers.

9. tl_func{"list_splice_init",(*first)^entry,
cxt_call{"__run_timers",cxt_any}}
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next pointer of the list is copied to the local variable first.

10. tl_func{"list_splice_init",(*head->next)^entry,
cxt_call{"__run_timers",cxt_any}}

-> tl_func{"list_splice_init",uk_recurse{*head}^entry,
cxt_call{"__run_timers",cxt_any}}

first is copied to the next pointer of the parameter list head.

This is generalized to reintroduce the uk recurse trace.

11. tl_func{"__run_timers",uk_recurse{work_list}^entry,cxt_any}

Propagate back out to caller run timers.

12. tl_func{"__run_timers",uk_recurse{*head}^entry,cxt_any}

Follow assignment of &work list to local variable head.

13. tl_func{"__run_timers",*timer,cxt_any}

Use container of to access the base timer of the head->next

list entry, completing the propagation.

5.2.3 Cacheing and Optimization

We can use some simple analysis to greatly improve the escape analysis

performance on many queries. The base escape analysis hence described

is completely demand driven, with no cacheing between queries to allow

reuse of the exploration of overlapping parts of the state space.

We can get part of the effect of a cacheing mechanism, however, with

simple, specialized analyses that cover many of the most expensive and

frequently repeated portions of the state space. These analyses can, in

many cases, make the difference between tractability and intractability

for future queries, by greatly reducing the number of locations those

queries will have to visit.
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Viable uses of rfld

Suppose we are tracking backward *(x->g) and see an assignment y =

&x->f. This introduces the implicit flow edge from *x to rfld{*y,f,c}
(See Section 3.2.2), and since *x is a sublocation of the location we are

tracking, we have to follow the edge and consider *(rfld{*y,f,c}.g).
If there is no place in the program where container of is ever used

with field f, the location to which we propagated will never be ac-

cessed anywhere in the program, and any further propagation we do is

meaningless.

We thus perform an analysis to find all fields which are used with

container of, and for fields f not in this set, ignore flow edges with

rfld{ ,f,c} in the target.

Read only data passed to functions

Suppose we are, again, tracking backward *(x->g) and see a call

foo(x);. Again, we have to follow *x to the new location *(y->g)

where y is the first argument to foo, and following that to everywhere

y is passed, and so forth. For any of the locations where y flows to, we

are only interested in what new values could be assigned to y->g. Many

of the arguments passed to functions will only be used for reading, and

in these cases following the argument edge forward during backward

propagation will not yield anything.

To avoid this useless propagation, we perform an analysis to find

argument traces to each function which are read-only: they never es-

cape forward to a point where they are written. (Note that we consider

all writes, even those outside the function, for cases where the location

escapes somewhere within the function, and is then written elsewhere

in the program). This is just a scan over each function in the program,
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applying the escape analysis to the fields of each structure pointer ar-

gument (following nested structures transitively). Traces are marked

readonly in cases where the escape succeeds and none of the resulting

locations are ever written to.

Relative field writes

Suppose we are tracking backward *(x->f.g) and see an assignment

y = &x->f. Again, we now have to follow *(y->g) to see if there are

assignments to the g field we need to continue following back. In some

cases y could flow forward to many hundreds of locations, and yet none

of those will possibly result in a write since all writes to g are performed

relative to an outer structure, of the form z->f.g = ... or q.g = ...

with q a global variable. The assignment to y could only lead to a write

to g in places where some z->f.g is written, even if we have no idea

where y flows.

The timer list discussed in Section 1.2 is an example of this; all

timer list’s are either part of a larger structure or are global variables,

and that larger structure or variable is used when writing the func and

data fields of the timer list.

We can handle this case with yet another scanning analysis. For

each field g in the program, we will mark writes y->g = ... as non-

relative, and writes z->f.g = ... or q.g = ... as relative. When

escaping, for fields g with no non-relative writes, taking the address y

= &x->f will lead to a future write only at those relative writes where

some z->f is specified.
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5.3 Memory Analysis Refinements

With the escape analysis in hand, we can now revisit the question of

generating sound rules for the local memory analysis on when traces

might alias, and when they might be clobbered by a function call.

These correspond to filling in rules for the predicates trace alias

and trace clobber (Section 3.3.5), and are covered in Sections 5.3.1

and 5.3.2, respectively.

5.3.1 Local Memory Aliasing

The only aliasing queries generated by the local memory analysis will

be for those traces which can hold a value, i.e. are of integral or pointer

type and are not the base of a structure. This includes root, drf, fld,

and index traces (rfld traces are always the base of a structure).

Syntactically identical traces always alias one another; the location

referred to by a trace stays the same throughout the execution of a

function. For two syntactically different traces, the following conditions

describe when aliasing might occur.

• Two traces root{ } and root{ } never alias.

• Two traces root{ } and fld{ , , } never alias.

• Two traces fld{T0,F0,C0} and fld{T1,F1,C1} alias iff F0 = F1,

C0 = C1, and T0 and T1 alias. This assumes the type safety

property from Chapter 1, that if the two fields are different they

cannot overlay.

• Two traces which are both either drf or index alias if they have

the same type. This assumes a similar notion to type safety, that
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two locations which are not fields of a structure are used with a

consistent type, e.g. no location is used separately as an integer

and a pointer.

• Two traces index{ , , } and either a root or fld never alias.

• Two traces drf{ } and either a root or fld do not alias if they

are different types. If they are the same type, they might alias

unless the escape analysis shows that either the root/fld cannot

flow forward to the drf, or that the drf cannot flow backward to

the root/fld.

The last rule is the interesting one. For a variable x and pointer

y, x and *y can alias only if somewhere in the program &x is taken

and there is a path through the assignment flow edges into *y. We can

disprove the existence of such a path by finding either all the points

where x flows to, or where *y comes from, and showing the other is not

in that set.

5.3.2 Local Memory Clobbering

Constructing precise per-function usemod information is an extremely

difficult problem, and one that we are not going to try to tackle. The

version of the Linux kernel we are analyzing contains 91384 functions.

The call graph produced after running our function pointer analysis

includes a strongly connected component of 48415 functions, where an

additional 20157 functions are called by functions in the SCC, and

16357 functions call into functions in the SCC (the remaining 6455

functions are disconnected from the SCC). According to this call graph,

then, 70% of the functions in the kernel can call into 75% or more of
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the functions in the kernel, and could transitively modify all the data

written by those functions.

The call graph precision could be improved, of course, with a bet-

ter function pointer analysis that generates more precise and context-

sensitive call information. For example, consider the utility function

kref put, which decrements reference counts on kernel objects:

// lib/kref.c
int kref_put(struct kref *kref,

void (*release)(struct kref *kref))
{

WARN_ON(release == NULL);
WARN_ON(release == (void (*)(struct kref *))kfree);

...
if ((atomic_read(&kref->refcount) == 1) ||

(atomic_dec_and_test(&kref->refcount))) {
release(kref);
return 1;

}
return 0;

}

kref put is called in dozens of places by unrelated parts of the

kernel, with the release callback leading back into those parts. A

context-insensitive call graph will conflate all the parts of the kernel

which use kref put by drawing paths from each caller to all the pos-

sible callbacks. A context-sensitive call graph, by splitting the call to

release according to who called kref put, will generate paths from

each caller only to the corresponding release callback.

We’ve tried this improvement, with k-limited (k = 1 usually, or

more for some functions) context-sensitive indirect call edges (this is

done using the escape analysis on trace locations containing the indirect
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call’s function pointer trace and cxt call contexts for each parent call

site), to little effect in the size of the call graph SCCs.

It may well be, then, that this huge SCC and the huge list of callees

and modsets for most functions reflects the real state of the kernel. We

can get some leverage on the modset problem, however, by handling

two common cases that will be important to later analyses: structure

fields which are only modified at creation of the structure, and functions

which modify few or no locations.

We’ll call these semi-pure fields and functions. A semi-pure field

is one where only a small fixed set of initialization functions can tran-

sitively modify that field in a structure passed into the function (via

arguments or global variables). A semi-pure function is one which can

transitively modify only a small fixed set of the locations passed into

it. Inference for field and function purity is covered in Sections 5.3.2

and 5.3.2, respectively, and the call site clobbering rules incorporating

these is shown in Section 5.3.2.

Structure field purity

Semi-pure fields are only written either at creation of the parent struc-

ture or very shortly afterwards by initialization functions. These can be

viewed as something of a backbone for the heap, important fields sta-

bilizing the heap’s structure by creating links between structures which

persist until the structures are deallocated. To capture these we will

use the salias comp init session:

session salias_write_comp(C:string,F:string)

containing [wcomp_impure,wcomp_init].

predicate wcomp_impure(FN:string).

predicate wcomp_init(FN:string,T:t_trace).

These predicates have the following interpretation:
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• salias write comp(C,F)->wcomp impure(FN): There is a write

to F in FN that is not initialization code. The structure being

written was passed in from outside and could be any structure of

type C in the heap.

• salias write comp(C,F)->wcomp init(FN,T): There is a write

to field F of T in FN or one of its transitive callees that is initial-

ization code. All functions to which T was passed from the point

it was allocated to the point of the write have a wcomp init pred-

icate in their summary (this is a small set of functions).

A field with no wcomp impure predicates in its salias write comp

session is semi-pure. A trace fld{T,F,C} where F is semi-pure can be

modified by a call to a function CFN only if there is a wcomp init(CFN,CT)

predicate and CT within CFN can alias T.

We can infer these predicates with a scan over the code base. For

any write to some fld{T,F,C}, use the escape analysis to follow the

base structure backward at the ep maximum level of precision, so that

we never generalize the trace. This escape will either terminate at all

the possible allocation sites for T (stack locals, globals, or return values

of kmalloc and other primitive allocators), or it will spin off into the

heap and fail to capture the possible sources of T. We mark the write

as wcomp impure if the escape fails, or if it succeeds but the sources

include any traces rooted at global variables. Otherwise, we take every

tl func{FN,T, } from the result of the escape, where T is rooted at an

argument, and add wcomp init(FN,T).

Note that this procedure will not generate any summary infor-

mation for writes to structure fields within the function the struc-

ture is allocated (e.g. str *x = (str*)kmalloc(sizeof str); x->f

= ...;). Since the data being written was allocated inside the function
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these writes are not part of the function’s modifies set.

Function purity

Of the 26612 functions in the analyzed Linux kernel which do not

call into the large SCC, 11768 (44%) do not have any callees at all,

and 24745 (93%) have fewer than 10 transitive callees. For most of

these functions we can construct an exact modifies set. We use the

salias write func session to store per-function modset information:

session salias_write_func(FN:string)

containing [wfunc_impure,wfunc_write,

wfunc_write_inline,wfunc_allocate].

predicate wfunc_impure().

predicate wfunc_write(T:t_trace).

predicate wfunc_write_inline(T:t_trace,V:scalar).

predicate wfunc_allocate(T:t_trace).

These predicates have the following interpretation:

• salias write func(FN)->wfunc impure(): Nothing is known

about the precise set of locations FN might modify while exe-

cuting.

• salias write func(FN)->wfunc write(T): Trace T as passed into

FN might be written to.

• salias write func(FN)->wfunc write inline(T,V): Trace T as

passed into FN will definitely be written to with the value V, a

scalar integer or trace value expressed in terms of the entry

state to FN.

• salias write func(FN)->wfunc allocate(T): Trace T as passed

into FN will definitely be written to either with NULL or with a

freshly allocated location.
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A function FN with no wfunc impure in its salias write func ses-

sion is semi-pure. In this case the wfunc write predicates describe

all the locations which might be written to by FN but were not allo-

cated within the body of FN. Predicate wfunc allocate characterizes

wrappers for primitive allocation functions, and wfunc write inline

is primarily for the numerous inline functions in Linux that perform

some simple side-effect free integer operations and/or heap accesses be-

fore returning (these functions are usually used in lieu of macros). An

example is netdev priv, a utility function called over 3000 times in

Linux which returns the address of a block of data hidden at the end of

every net device structure (we will take a closer look at this structure

in Section 9.6.1).

// include/linux/netdevice.h
#define NETDEV_ALIGN 32
#define NETDEV_ALIGN_CONST (NETDEV_ALIGN - 1)

static inline void *netdev_priv(struct net_device *dev)
{

return (char *)dev + ((sizeof(struct net_device)
+ NETDEV_ALIGN_CONST)

& ~NETDEV_ALIGN_CONST);
}

Inferring the wfunc write inline and wfunc allocate predicates

requires deeper reasoning about integers and must-update facts than

what we can get with the global memory model used by the escape anal-

ysis. To get the predicates in salias write func we will switch over to

the local memory model, which itself depends on salias write func

for call site clobbering information (Section 5.3.2). It is safe to put the

salias write func analysis in a fixpoint, though; initially the sessions

will be empty indicating there are no side effects on a function, but
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as the sessions get filled in any affected callers will be automatically

reanalyzed using the more conservative information.

For each function we will first mark it as impure if any of its callees

is impure. Then, for each write in the function, including both explicit

writes and wfunc write predicates propagated up from its callees:

1. Drop all writes to traces allocated within the function — local

variables, freshly heap-allocated locations, and their fields.

2. Mark the function as impure if there are any remaining writes

to traces containing uc sum{ , , }. The uc sum traces generated

when pointers might be clobbered by a call are unconstrained and

could point anywhere in the heap.

3. Apply an arbitrary cleanliness filter to the remaining writes, and

mark the function as impure if any of them are filtered out. Writes

we filter out include those to traces rooted at global variables,

traces with more than two drf dereferences, and traces contain-

ing an index or rfld. These filters keep a lot of crud out of the

summary sessions for impure functions, and also allow the analy-

sis to terminate on functions that walk and modify the contents

of arrays or recursive structures.

4. All the remaining writes are added to the salias write func

session as wfunc write predicates.

5. If any of the written traces always points to NULL or a freshly al-

located heap location at function exit, add it as wfunc allocate.

6. If any of the written traces always points to a particular value

which doesn’t use any uc sum{ , , } unconstrained trace, add it

as wfunc write inline. We also use a filter here, only adding
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inline assignments for the return value and for traces which are

assigned an argument of the function (a very common pattern in

initialization functions).

Clobbering Rules

Once the salias write comp and salias write func databases have

been generated, the rules for the trace clobber are as follows. For

calls to semi-pure functions, the only traces clobbered are those which

might alias (via trace alias) any of the wfunc write predicates in

the function’s summary. For calls to impure functions, any trace might

be clobbered except those meeting one of the following criteria:

• Local variables and their fields which do not escape forward into

the called function or into any global variables.

• Fields fld{T,F,C} which are semi-pure and where there is not a

wcomp init predicate for F/C on the called function.

Additionally, at calls to a function containing a wfunc write inline

predicate (whether the function is semi-pure or not), we can inline these

writes at the call site by adding instances of the assign predicate at

the call site, as if it were a regular assignment. These will be picked up

by the local memory model and used to apply a strong update which

does not sacrifice any precision by introducing a uc sum trace.



Chapter 6

Polymorphic Data

Polymorphism is used extensively in the Linux kernel. Many of the

core kernel data structures associated with filesystems, memory maps,

devices, drivers, and almost all other kernel subsystems include some

element of parametric or subtype polymorphism — a combination of

function pointers and void* pointers used to extend a structure’s func-

tionality or the data it stores according to a particular interface.

Polymorphism in Linux typically follows one of two patterns, with

examples of each in Sections 6.1 and 6.2. First, and simplest, is to

store in a structure a function pointer and some void* data, such that

at some point in the future the function pointer will be called with

that data. For example, the timer mechanism (see Section 1.2) and

interrupt handling mechanism use this approach. A function pointer

and void* pointer are supplied, and at some point in the future, either

when the timer expires or a particular interrupt occurs, the function is

called with the data.

The second pattern is to use a whole table of function pointers, in

essence a vtable in the object-oriented sense, which can write and read

to a void* pointer with which a pointer to the table is correlated. The

102
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file structure, an important filesystem component, includes a pointer

to a table of function pointers for opening and closing the file, among

numerous other operations. The function pointers in this table are used

exclusively to access the void* field private data of the associated

file.

The analysis problem presented by these two patterns is the same;

to follow what’s happening in the code we need to precisely track the

correlation between function pointers and targets of void* pointers.

6.1 Function Pointer Correlation Exam-

ple

Let’s revisit our very first example. Function saa7146 buffer timeout

might be called indirectly via run timers due to its use in vbi init

(and video init).

// drivers/media/common/saa7146_fops.c
void saa7146_buffer_timeout(unsigned long data)
{

struct saa7146_dmaqueue *q = (struct saa7146_dmaqueue*)data;
...

}

// drivers/media/common/saa7146_vbi.c
static void vbi_init(struct saa7146_dev *dev,

struct saa7146_vv *vv)
{

...
vv->vbi_q.timeout.function = saa7146_buffer_timeout;
vv->vbi_q.timeout.data = (unsigned long)(&vv->vbi_q);
...

}

// kernel/timer.c
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static inline void __run_timers(tvec_base_t *base)
{

struct timer_list *timer;
...

void (*fn)(unsigned long);
unsigned long data;

timer = list_entry(head->next,struct timer_list,entry);
fn = timer->function;
data = timer->data;

...
fn(data);
...

}

The reason the cast performed by saa7146 buffer timeout is cor-

rect is that the data passed into it must be the same as that which was

assigned by vbi init — there is a correlation between the function

and data fields of a timer list. While the function and data fields

are highly polymorphic and are assigned hundreds of different unre-

lated values within Linux, each such function is only associated with

a very few possibilities for the data, and vice versa. Capturing these

correlations and identifying what are the possible values of the data for

each particular function is the purpose of the polymorphic data analy-

sis. Polymorphic structures such as timer list are in widespread use

within Linux, and finding a near-exact model of these correlations is

crucial to verifying type safety.
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6.2 Function Pointer Table Example

Recall the saa7146 driver which contained the saa7146 buffer timeout

function used within timer list. Here is another function in the

saa7146 driver, fops read.

// drivers/media/common/saa7146_fops.c
static ssize_t fops_read(struct file *file,

char __user *data, size_t count,
loff_t *ppos)

{
struct saa7146_fh *fh = file->private_data;

switch (fh->type) {
...

}
}

The file->private data pointer has type void*, so fops read

performs another cast we are interested in checking for type safety.

What’s going on with this function?

In keeping with Unix practice, user applications in Linux can inter-

act with many devices as if they were regular files. To this end, there is

a common interface within Linux for defining new files, which is neatly

packaged up into the file operations structure, basically a big table

of function pointers, 27 in all (though not all are used by each driver

or filesystem).

// include/linux/fs.h
struct file_operations {

struct module *owner;
loff_t (*llseek) (struct file*, loff_t, int);
ssize_t (*read) (struct file*, char __user*, size_t, loff_t*);
ssize_t (*aio_read) (...);
ssize_t (*write) (...);
ssize_t (*aio_write) (...);
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...
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *);
int (*release) (struct inode *, struct file *);
...

};

Interaction with the file is primarily done through the function

pointers in the f op field pointing to the file operations for the file.

e.g. vfs read is used to read out of a file as follows:

// include/linux/fs.h
struct file {

...
struct dentry *f_dentry;
struct vfsmount *f_vfsmnt;
const struct file_operations *f_op;
...

void *private_data;
...

};

// fs/read_write.c
ssize_t vfs_read(struct file *file,

char __user *buf, size_t count, loff_t *pos)
{

...
ret = security_file_permission (file, MAY_READ);
if (!ret) {

if (file->f_op->read)
ret = file->f_op->read(file, buf, count, pos);

...
}

return ret;
}

vfs read is called directly by the top level sys read which is the
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entry point from user space. To allow vfs read and the other top

level file operations to interact with saa7146 devices, the saa7146 driver

creates a file operations structure, and the fops read function is set

to the read pointer of this file. vfs read may indirectly call fops read.

// drivers/media/common/saa7146_fops.c
static struct file_operations video_fops =
{

.owner = THIS_MODULE,

.open = fops_open,

.release = fops_release,

.read = fops_read,

.write = fops_write,

...
};

Now that fops read might be invoked, why is the cast it performs

correct? video fops is never directly assigned to some file->f op,

and writes to the f op field are never directly correlated with writes to

the private data field.

A different mechanism is in use. Function dentry open, which

opens a file, sets the f op field and proceeds to call its open method.

// fs/open.c
static struct file *
__dentry_open(struct dentry *dentry, struct vfsmount *mnt,

int flags, struct file *f,
int (*open)(struct inode *, struct file *))

{
...
f->f_dentry = dentry;
f->f_vfsmnt = mnt;
f->f_op = fops_get(inode->i_fop);
...

if (!open && f->f_op)
open = f->f_op->open;
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if (open) {
error = open(inode, f);
if (error)

goto cleanup_all;
}

...
}

Going back to the video fops used to store fops read, we see

that the corresponding open function is fops open, which sets the

private data field of the file to the value expected by fops read.

// drivers/media/common/saa7146_fops.c
static int fops_open(struct inode *inode, struct file *file)
{

struct saa7146_fh *fh = NULL;
...

fh = kzalloc(sizeof(*fh),GFP_KERNEL);
if (NULL == fh) {

...
goto out;

}

file->private_data = fh;
fh->dev = dev;
fh->type = type;
...

}

For the polydata analysis we need to correlate the f op->read field

of a file with the private data. We cannot do this by looking

for matched writes of f op and private data, but instead by match-

ing up the f op->open function and the writes it performs with the

f op->read function.
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6.3 Algorithm Overview

When saa7146 buffer timeout is called by run timers, the data

supplied to it must be that specified by a previous call to vbi init or

video init, not any of the hundreds of other assignments to the data

field of a timer list that exist in the Linux kernel.

The reasons for this are twofold. First, the run timers indirect

call exploits a structural relationship between the function pointer tar-

get of the call and the first argument to the call: both of these are fields

of the same timer list structure. In general, a structural relationship

is a pair of two locations reachable (via zero or more field accesses and

dereferences) from a common base structure, or two locations reachable

from the arguments to a common function.

Second, the possible values of the locations in a structural relation-

ship bear structural correlations with one another: the function field

of a timer list will be saa7146 buffer timeout if and only if the

data field was set by vbi init or video init, and similarly for the

hundreds of other functions that may be used in a timer list.

Structural relationships and correlations are a sufficiently general

model to tackle our polymorphism problem, the algorithm for which we

break into two phases. First, we scan all indirect call sites to identify

structural relationships holding between the function pointer used to

invoke the call and the data (or other function pointers) reachable from

the arguments to the call (Section 6.4). Second, we take in turn all

the structural relationships identified for some indirect call site by the

first phase, and for each of these identify all the possible structural

correlations between particular functions and values which could exist

for that relationship (Section 6.5).

Both of these phases are safe but approximate. In the first phase
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any relationship we find must indeed hold for that call site, but we may

miss some interesting relationships that we cannot determine hold. In

the second phase the correlations found will cover all possible values

each function may be associated with, but may overapproximate or fail

outright (in which case we know nothing about the correlations within

the relationship).

6.4 Call Site Structural Relationships

For each indirect call site, we need a set of structural relationships

which are guaranteed to hold at the call site. The output of this phase

is stored in the spoly call session:

session spoly_call(FN:string,I:c_instr)

containing [wpoly_call_target,

wpoly_call_comp,wpoly_call_func].

predicate wpoly_call_target(FT:t_trace).

predicate wpoly_call_comp(FT:t_trace,C:string,

RFT:t_trace,RT:t_trace,AT:t_trace).

predicate wpoly_call_func(FT:t_trace,T:t_trace,AT:t_trace).

Predicate wpoly call target identifies the possible traces FT for

the function pointer used to invoke the indirect call site I within func-

tion FN. There may be multiple values for FT in cases where the in-

direct call targets different traces along different paths, such as in the

dentry open example shown earlier, where the function pointer could

either be the open function argument or the field f->f op->open. Case

splitting based on the function pointer’s trace FT lets us identify the

relationships holding when f->f op->open is used irrespective of the

case where open is used (there are only two possible open functions

which might be passed in explicitly, both of which are no-ops).
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For each of these traces FT, wpoly call comp and wpoly call func

identify structural relationships which always hold on paths where FT

is used to invoke the call. wpoly call comp identifies a relationship

between two traces RFT and RT relative to a base structure of type C,

where RFT is the function pointer invoking the call and RT is accessed

through argument trace AT within the call. Similarly, wpoly call func

identifies a relationship between two traces FT and T which are argu-

ments to function FN, where FT is the function pointer invoking the call

and T is accessed through argument trace AT within the call.

For the indirect call in the run timers function, there is a sin-

gle structural relationship for the timer list struct and the following

predicates will be generated (we substitute the trace TIMERT for the

fairly complicated trace which the variable timer is assigned):

wpoly_call_target(drf{fld{TIMERT,"function","timer_list"}}).

wpoly_call_comp(drf{fld{TIMERT,"function","timer_list"}},

"timer_list",

drf{fld{empty,"function","timer_list"}},

drf{fld{empty,"data","timer_list"}},

drf{root{arg{0}}}).

Computing the information in spoly call is fairly straightforward

and can be done without interprocedural analysis. Each indirect call

is associated with a function expression FE which we apply the eval

predicate to, yielding each function pointer trace FT and an associated

guard FG. Then, for any trace T which might be passed in as argument

trace AT if guard TG holds, we can add structural relationships between

FT and T if FG implies TG.

The only issue is how to find the argument traces AT to check; while

using just the plain argument drf{root{arg{ }}} is sufficient for the

run timers example, the vfs read example is concerned not with
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the file argument but with its private data field. More complex

examples require even longer access chains, and in the general case the

amount of data reachable from each argument (and thus the number

of possible structural relationships) is unbounded.

We get around this issue with a mixture of heuristics and more ro-

bust methods. We will focus on relationships between function pointers

and untyped data — void* pointers and integers which could be point-

ers in disguise (such as the argument to saa7146 buffer timeout).

These relationships are the most likely to have meaningful structural

correlations, as well as being the most useful to the downstream casting

analysis (Chapter 7). The argument traces AT we will consider are:

• Untyped call arguments.

• Untyped fields of call arguments (or fields of fields, transitively,

without following dereferences).

• Any additional trace specified via an auxiliary spoly call try

session. This session specifies, for each function XFN, a set of

traces XAT interesting to a downstream analysis. For the indi-

rect call, we will consider each XAT associated with each potential

target XFN of the call.

The casting analysis will fill in spoly call try with all the un-

typed traces each function directly casts to a new type (e.g. for

saa7146 buffer timeout this will include drf{root{arg{0}}}).

6.5 Finding Relationship Correlations

The output of this phase is stored in the spoly receive comp and

spoly receive func sessions:
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session spoly_receive_comp(C:string,

RFT:t_trace,RT:t_trace,AT:t_trace)

containing [wpoly_receive,wpoly_fail].

session spoly_receive_func(FN:string,

FT:t_trace,T:t_trace,AT:t_trace)

containing [wpoly_receive,wpoly_fail].

predicate wpoly_receive(FNPTR:string,FN:string,DT:t_trace).

predicate wpoly_fail().

Each wpoly receive predicate identifies a possible correlation for

the structural relationship identified by the spoly receive comp or

spoly receive func session which contains that predicate. If function

FNPTR is the value held by the function pointer trace in the relationship

(either RFT relative to type C, or trace FT within function FN), then the

value held by the other trace RT/T may be that of DT within FN.

Unless a wpoly fail predicate was generated for the relationship,

then the wpoly receive predicates collectively capture the possible

values each concrete FNPTR may be correlated with.

The relationship for the timer list struct will be stored in the

following session:

spoly_receive_comp("timer_list",

drf{fld{empty,"function","timer_list"}},

drf{fld{empty,"data","timer_list"}},

drf{root{arg{0}}})

Due to the assignments in vbi init and video init, this session

will contain the following predicates:

wpoly_receive("saa7146_buffer_timeout","vbi_init",

fld{drf{root{arg{1}}},"vbi_q","saa7146_vv"}).

wpoly_receive("saa7146_buffer_timeout","video_init",

fld{drf{root{arg{1}}},"video_q","saa7146_vv"}).
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There will be hundreds of other wpoly receive predicates in the

same spoly receive comp session for timer list, but no others will

use saa7146 buffer timeout for the function pointer.

We compute the wpoly receive information by scanning all the

writes in the program to determine:

1. Which structural relationships the write could affect — the heap

location written may alias either the function pointer or value por-

tion of the relationship or one of their subtraces (Section 6.5.1).

2. Which correlations the write may introduce for each relationship

(Section 6.5.2).

These are written as two pieces of a single analysis (based on the

local memory model from Section 3.3), and may both query and update

the spoly receive comp and spoly receive func sessions. This will

require an interprocedural fixpoint computation.

6.5.1 Writes Affecting Relationships

The output of this phase consists of the following two predicates, which

collectively model the effect all the writes in the currently analyzed

function have on the structural relationships in the spoly call session.

predicate comp_assign_value(C:string,

RFT:t_trace,RT:t_trace,AT:t_trace,

NFT:t_trace,NT:t_trace).

predicate func_assign_value(FN:string,

FT:t_trace,T:t_trace,AT:t_trace,

NFT:t_trace,NT:t_trace).

NFT and NT are traces within this function for a new correlation for

the relationship on either a struct type or function. Note that NFT
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may not be a particular function; in Section 6.5.2 we will determine

the possible functions it could refer to.

In the function case, the writes we are interested in are the argument

bindings for calls to the target function. For any call to some function

with a relationship on it, evaluate the relationship’s argument traces

FT and T at the call site (using inst trace, Section 3.3.1) to get the

new values NFT and NT.

The struct type case is considerably more complicated. Instead of

argument bindings, we need to look at writes to the heap which could

possibly affect the traces in each relationship. To help in analyzing the

heap writes, we will make a couple of simplifying assumptions about

the possible structural relationships. These assumptions are reinforced

through filters on the wpoly call comp and wpoly call func predi-

cates in the spoly call session (Section 6.4).

• The only traces dereferenced in the paths on a relationship are

structure fields (i.e. drf{fld{ , , }}). This rules out traces such

as (**x)->f[3] (which in practice are not used in any meaningful

relationships).

• Fields which are dereferenced in a relationship path are not writ-

ten through indirect pointers (e.g. x = &y->f; *x = z;). The

escape analysis supplies this information: for each x = &y->f,

follow *x forward and look for any writes to it.

With these two filters in place, we now only need to look at direct

writes to structure fields, avoiding the mess that can arise with updates

*p = ...; if we can’t determine where p came from, it could otherwise

affect every known relationship.

Now, each write to a field can only affect the relationships which
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directly mention the dereference of that field. To get the new correla-

tions and fill in comp assign value, we need a trace STR for the base of

the relationship (the value of type C for which RFT and RT are relative),

and then evaluate RFT and RT after the heap write to get NFT and NT.

If NFT or NT is provably NULL, we ignore the write; we don’t care about

correlations where one or the other value is NULL (these will not end up

being useful for the casting analysis).

Usually STR is simple to determine. In the timer list example, we

only care about writes to some x.function or x.data field, and STR

will be the associated x. With more complex paths in the relationship

there are additional wrinkles to deal with.

Recall the file reading example from Section 6.2. Here we are in-

terested in the relationship, for all values f of type file, between

f->f op->read and f->private data. Again, for direct writes to some

f->f op or f->private data, we know the exact file *f that is being

updated. However, for writes to some op->read where op has type

file operations*, we do not know which file is being updated. Even

if the write is instead to some f->f op->read, there could be another

file in the heap whose f op field is aliased with *f->f op.

Taking these concerns into account, the procedure for dealing with

writes affecting struct type relationships is as follows:

1. Take some trace XT which is written, which might alias some rel-

ative trace XRT (both have the same trailing fld{ ,F,C}), where

drf{XRT} is a subtrace of either RFT or RT in a relationship on a

struct type.

2. If there is a trace STR where trace sub(XT,STR,XRT) and XRT

contains no dereference, use that STR with RFT and RT to obtain

NFT and NT. Ignore cases where NFT or NT are NULL.
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3. Otherwise, if it is possible that there exists a trace STR where

trace compose(STR,XRT,RT), then fail the relationship with the

wpoly fail predicate. There cannot exist such STR if either the

write occurs in a static initializer (run before the program starts,

by far the most common case for types like file operations),

XT is in a just-allocated heap location which no such STR has

been updated to point to yet, or if XT and XRT cannot alias

(via trace alias) due to, e.g. incompatible fields (x->g.f vs.

z->h.f).

Synchronized Writes

We can get some extra precision characterizing writes in cases where

the function pointer and data traces are written in synchronization with

one another, along the same code paths. For example, in the vbi init

example function, the following two assignments appear next to one

another:

vv->vbi_q.timeout.function = saa7146_buffer_timeout;
vv->vbi_q.timeout.data = (unsigned long)(&vv->vbi_q);

The approach described thus far adds correlations after the writes

to both the function and data fields, so that the comp assign value

predicates pair function saa7146 buffer timeout with both the ini-

tial and new values of the data field, *vv->vbi q.timeout.data and

vv->vbi q. The first of these is overapproximate since the data field

is overwritten before the program can invoke an indirect call through

the function field.

So, we refine our approach as follows. A write to one half of a

relationship can be ignored if:
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• The write will definitely be followed by a write to the other half

later in the same function; the guard associated with the earlier

write implies the disjunction over the guards on all the future

writes (there may be multiple such writes along different paths).

• There are no calls along the paths from the earlier to the future

writes where either the call can invoke the relationship’s function

pointer, or the call has a side effect which copies the function

pointer or data to a new location. Such accesses would use the

locations in the relationship while they are still in the process of

being updated.

6.5.2 Writes Introducing Correlations

We need to convert each generated comp assign value(...,NFT,NT)

and func assign value(...,NFT,NT) into wpoly receive predicates

to store in the spoly receive comp and spoly receive func sessions,

respectively. The generated wpoly receive need to collectively de-

scribe all the possible values of NFT and NT, and in addition need to

specify concrete function names FNPTR rather than symbolic traces NFT.

There are several ways we can do this.

• Simply use the escape analysis to find all the FNPTR values which

NFT could refer to (Section 6.5.2).

• Follow any transitive structural relationship between NFT and NT

(Section 6.5.2). If NFT and NT were both derived from the same

structure, or both passed into the current function, they share

a relationship whose correlations are a superset of the possible

values for NFT and NT.
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• If the current function is always invoked through an indirect call,

look for structural relationships between NFT and the trace used

to invoke that indirect call (Section 6.5.2). This approach lets us

handle the file example, where there are relationships on files f

not just between f->f op->read and f->private data, but also

between f->f op->open (through which fops open is invoked)

and f->f op->read.

Each of these approaches may either fail or generate one or more sets

overapproximating the values for NFT and NT. If all of the approaches

fail, we must fail on the whole structural relationship; we could not

capture the effect of a write updating it. Otherwise, we take the inter-

section of all the result sets to get the best overapproximation we can

to the wpoly receive values for NFT and NT.

Simple Correlations

We can usually use the escape analysis to get a set of possible functions

for NFT: just follow NFT backwards and slice out the set of global func-

tions from the result. In the simplest cases such as in vbi init, NFT is

already a named function and we get an exact singleton set. There are

problems with more complex NFT, however.

Consider a function similar to vbi init but without the write to

vv->vbi q.timeout.function with saa7146 buffer timeout.

vv->vbi_q.timeout.data = (unsigned long)(&vv->vbi_q);

In this case we will get for NFT the initial value of the function

pointer, *(vv->vbi q.timeout.function). There are several ways we

could generalize this trace for the escape analysis while propagating

backward, simplifying the trace to either values of .function over type
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timer list, values of .timeout.function over type saa7146 dmaqueue,

values of .vbi q.timeout.function over type saa7146 vv, or keeping

the original trace vv->vbi q.timeout.function.

Escaping using .function will find every function that could be

assigned to any timer list, a uselessly imprecise overapproximation.

Escaping using vv->vbi q.timeout.function will follow vv back and

forth everywhere it is passed in the code, likely leading to propagation

failure (hitting the propagation threshold). Escaping using the trace

locations for .timeout.function or .vbi q.timeout.function will

yield the correct result, finding the only value that is assigned directly

to this field chain is saa7146 buffer timeout, and that there can be

no indirect assigns due to taking the address of .timeout.

Across the many NFT, the best generalization method for escape

propagation varies widely, so to maximize the chance that we will

use the right method, we try several in parallel, yielding sets for each

method that does not hit the propagation threshold, and will end up

using the intersection of those that succeed.

In practice, what has worked for methods is to limit the number of

fields in the trace to either one, two, or four before simplifying it to a

type invariant (the escape precision levels ep field{1}, ep field{2},
and ep field{4}). This approach is heuristic, but has the advantage

that adding more methods will only improve the precision of the heuris-

tic, at some runtime cost.

Transitive Correlations

Sometimes structural relationships are dependent on one another. Con-

sider the following example, from the Linux IRQ subsystem.

// kernel/irq/manage.c
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int request_irq(unsigned int irq,
irqreturn_t (*handler)(int, void *, struct pt_regs *),
unsigned long irqflags, const char * devname, void *dev_id)

{
struct irqaction * action;
...

action = kmalloc(sizeof(struct irqaction), GFP_ATOMIC);
if (!action)

return -ENOMEM;

action->handler = handler;
action->flags = irqflags;
cpus_clear(action->mask);
action->name = devname;
action->next = NULL;
action->dev_id = dev_id;

...
}

Type irqaction specifies a function pointer handler which should

be called when a specific interrupt is received. The handler field

should be passed, among other things, the void* field dev id, so that

.handler and .dev id share an important structural relationship. Each

irqaction is created within request irq, where the handler and

dev id are passed in by the caller. There is thus an additional im-

portant relationship between the handler and dev id arguments to

request irq, and any correlations within this latter relationship should

be added to the relationship on irqaction.

Detecting these dependencies is similar to what we did for the orig-

inal indirect call sites in Section 6.4. If NFT and NT are both reach-

able from the same base structure, they are based on a relationship

for that structure’s type. If NFT and NT are different arguments to



CHAPTER 6. POLYMORPHIC DATA 122

the current function, they are based on a relationship for the cur-

rent function. Any wpoly receive correlations from the corresponding

spoly comp receive or spoly func receive should be added for NFT

and NT (unless there is also a wpoly fail).

Note that this introduces read dependencies on spoly comp receive

and spoly func receive. As these sessions get updated with new cor-

relations and failures, this function may be reanalyzed, leading to a

monotonic increase in the number of correlations and failures found for

the relationships in the analyzed program.

Dominating Indirect Calls

Going back to the file example, the write we are most concerned with

is that in fops open, where the argument data file->private data is

written. We are interested in the possible values for file->f op->read

here, and while that value is never written in this function, we can

still get information about it from the call stack. fops open is never

called directly, but rather only through dentry open and a few similar

functions. In each of these functions we can prove that fops open is

only called through file->f op->open: the code is some variant of

file->f op->open(inode, file).

We thus know that within fops open, file->f op->open equals

fops open. When this equality holds, what are the possible values for

file->f op->read? If we track the structural relationship for type

file operations between its open and read fields, we can answer this

question with the resulting correlations.

Finding the correlations for this file operations relationship is

straightforward, as the open and read fields are always written in syn-

chronization with each other, almost always in a global initializer. With



CHAPTER 6. POLYMORPHIC DATA 123

fops open in the open field, the only possible value for the read field

is fops read, which is thus the only possible value for NFT at the write

to private data in fops open.

This dominating-caller technique is geared towards relationships in-

volving function pointer tables, where there is an open-type method

which fills in some private data for the other methods in the table to

access. The technique in whole is as follows:

1. Find a function pointer trace XFT such that this function is only

called when XFT is equal to a particular function XFNPTR. This

dominance relation holds for a function FN when either:

• FN is only called indirectly and XFT refers to the invoked

function pointer at each parent call site. XFNPTR in this case

is FN.

• Each parent function which can invoke FN is itself dominated

by calls where function XFNPTR is equal to some YFT within

that parent (XFNPTR does not vary between parent functions;

YFT may differ). There is a trace XFT such that within each

parent, evaluating XFT at the call site to FN with inst trace

yields YFT.

Looking for dominators is k-limited to avoid an unbounded call

graph exploration; using k = 5 has been sufficient.

2. Look for a structural relationship on a struct type between XFT

and NFT. Normally the type will be a function pointer table like

file operations.

3. If there is such a relationship, then for each correlation within that

relationship between XFNPTR and some YFT, the possible values for
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NFT are the union over the possible values of each YFT. Normally

each YFT will be a particular function; if not, resolve with the

escape analysis as in Section 6.5.2.



Chapter 7

Cast Safety

We’ve laid the necessary groundwork to confront our main goal: can we

(almost) prove the safety of the tens of thousands of downcasts in the

Linux kernel? As described in Chapter 1, we want to make sure no heap

location will ever be cast into and used as two different, incompatible

types, thus getting partial coverage of the more general type safety

property. Specifically, we want to rule out the following two situations:

• Casting the address of a variable &x or field &y->f to a new type

the variable/field is incompatible with.

• Casting the same void* pointer (usually the result of a kmalloc)

into multiple incompatible types.

If we try to directly address the second situation, we will end up

doing a pairwise comparison of all casts which could refer to the same

location, to ensure the same location is not cast to two different types.

We need to avoid this pairwise comparison, and do so by splitting

the cast safety problem into two parts. First, at various points in the

program we fix types to particular traces. The type-fixing algorithm

125
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needs to obey the single constraint that for any execution of the pro-

gram, there is no concrete location which is fixed with two different

types (e.g. through two different traces which alias in that execution).

Second, for each downcast from a pointer v to type str, we need to

trace backwards from the point of the cast and ensure that the target

of v must have previously been fixed with type str. If we show this

for all downcasts, then there can be no conflicting casts of the same

location into two types in any execution of the program; since the

location can be fixed at most one type in the execution, and each cast

of that location can be traced back to a fixing of the location, each such

cast must therefore be casting into the same type.

The type-fixing algorithm is pretty straightforward. While it could

behave arbitrarily (as long as it obeys the stated constraint), any gaps

where it does not find the type with which a location will be used will

lead to false positives down the line. The algorithm we use follows the

program’s declared types, and is as follows:

• Stack- and statically-allocated variables are fixed the type with

which they were declared, i.e. a declaration str x; fixes type str

to the stack location of x.

• Heap-allocated objects are fixed the type to which they are ini-

tially cast, if there is such a cast. Memory returned by kmalloc

and similar allocators is untyped, and typically is immediately

cast in the manner of str *x = (str*)kmalloc(sizeof str),

in which case we will fix type str to the result of the kmalloc, at

the program point where kmalloc returns. This process requires

analysis to make sure we don’t fix multiple types to the same

location, and is covered in Section 7.2.

• Fields f of a location fixed to a structure type str are themselves
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fixed to the type of str.f.

Then, the facts we are interested in proving are all of a specific

form. For some trace T, structure type C, and condition G, we want to

prove that for all the locations L that T can refer to if G holds, L was

previously fixed with type C. We encode this as a t property value.

type t_property ::= l_value{T:t_trace,C:string,G:g_guard}.

We refer to the trace T in a property as the primary trace of the

property — it is the value whose type we are interested in. There may

be many other traces referred to by the property, either the subtraces

of T (T may contain chains of dereferences and field accesses) or values

referred to by G, but for these other traces we do not care about their

type.

The t property type does not specify where T came from or the

points at which we might consider the possible values L of T; t property

facts can be proved either inside a function, relative to a function call,

or as a global or type invariant. These t property facts are proved

in a demand-driven fashion, which is described in Section 7.1. In Sec-

tions 7.2 and 7.3 we consider the seed information and individual rules

which we need can prove t property facts, and in Section 7.4 we dis-

cuss how to consider casts of data that originated outside the operating

system (such as network packet headers and filesystem on-disk meta-

data).

7.1 Demand-Driven Analysis

Recall the function pointer table example we used for the polymorphic

data analysis back in Section 6.2. The read operation of the saa7146

filesystem driver is the fops read function below.
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// drivers/media/common/saa7146_fops.c
static ssize_t fops_read(struct file *file,

char __user *data, size_t count,
loff_t *ppos)

{
struct saa7146_fh *fh = file->private_data;

switch (fh->type) {
...

}
}

file->private data has static type void*, so we are interested

now in how to prove the correctness of this cast, that at entry to

fops read, the type of file->private data’s target was previously

fixed to saa7146 fh. Looking at this function, there are a variety of

ways we could prove this:

1. There could be an invariant on type file, such that every value

assigned to file->private data is of type saa7146 fh.

2. For every call site to fops read, the caller ensured a value of type

saa7146 fh was passed in through file->private data.

3. The polymorphic data analysis could have computed the correla-

tions for a structural relationship between file->private data

and the function pointer used to invoke this function (which is

file->f op->read at every call site), finding the the values with

which fops read is correlated.

As it turns out, not surprisingly, the third choice is the one which

will let us prove the correctness of this cast. The polymorphic data

analysis finds that when file->f op->read equals fops read, then

file->private data can only be a value assigned during the driver’s
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open function fops open (again, see Section 6.2), which is of type

saa7146 fh.

However, it is not obvious just looking at fops read which way to

prove the cast’s correctness will ultimately work out. There are plenty

of cases where a type invariant is the most suitable, or where the extra

precision of following the data back through all immediate call sites

(and future parent call sites) will work out. The different methods of

proving the cast’s correctness mirror the different ways in which we

could reason about the code, and there is no single way which will

always be appropriate.

We’ll address this problem by trying all the reasonable options for

proving the correctness of the cast. If any of the proofs work out then

the cast will be proved. Moreover, each of these proof attempts will

involve numerous subproofs; proving a type invariant requires we prove

facts about each write to the involved fields, proving a fact at a call

site requires proving things about the callers which could reach that call

site, and proving a fact about correlated data requires proofs about the

function containing that correlated data. Each of these subproofs could

be performed in numerous ways, with each of those ways requiring yet

more subproofs.

This will continue until we find subproofs which can be proved with-

out reliance on additional subproofs. For example, we can prove some

T has a type C within a function if the type of T was fixed to C within

that same function.

The individual items we are trying to prove are pairs between a

location h kind loc L — a function, global or structure type — and a

kind of fact h kind K that can hold with respect to that location.

type h_kind_loc ::=

hl_func{FN:string}
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| hl_glob{GLOB:string}

| hl_comp{COMP:string}.

type h_kind.

Type h kind will be specified later; it includes t property values

that must hold at, e.g. a particular point in a function, or after all writes

to a field or global. Now, for any pair of a location and kind (L,K),

that item might be proved in zero or more ways, each way requiring

zero or more subproofs of other items. These relations constitute Horn

clauses, simple Datalog-style rules where there is a clause (L,K) :-

(L0,K0), (L1,K1). when (L,K) is proved if both (L0,K0) and (L1,K1)

can be proved. Axiom clauses (L,K). indicate cases where (L,K) is

proved without requiring any subproofs.

The job of the demand driven portion of the casting analysis is

to generate these Horn clauses for concrete items within the program

through function, global, and type-local analysis, and to perform in-

terprocedural analysis by making as many derivations as possible from

the generated clauses.

There is, however, an infinite space of the possible items that could

be proved, and we are only interested in a finite subset, those which

will help us in proving the safety of the program’s casts. We will fill in

the space of interesting items, and the Horn clauses by which they can

be proved, as a demand-driven graph search. This search is encoded

within the following four sessions:

session scasting_try(L:h_kind_loc) containing [scheck].

session scasting_tried(L:h_kind_loc) containing [scheck].

session scasting_proved(L:h_kind_loc) containing [scheck].

predicate scheck(K:h_kind).

session scasting_derive(L:h_kind_loc)

containing [sprint,sfirststep,snextstep].
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type h_method.

predicate sfirststep(K:h_kind,

XL:h_kind_loc,XK:h_kind,XM:h_method).

predicate snextstep(K:h_kind,

XL:h_kind_loc,XK:h_kind,XM:h_method,

NL:h_kind_loc,NK:h_kind).

The first three sessions remember which items we are either going

to try to prove, have already tried to prove, or have managed to prove.

• scasting try(L)->scheck(K): The clauses by which the item

(L,K) can be proved should be generated. Either (L,K) is a seed

item which can prove the correctness of a particular cast in the

source program, or it is mentioned in the body of a clause which

can be transitively used to prove one of those seed items.

• scasting tried(L)->scheck(K): We have generated the clauses

by which (L,K) can be proved using other items. These clauses

are encoded in the scasting proved and scasting derive ses-

sions.

• scasting proved(L)->scheck(K): We have proved that the item

(L,K) holds. There is a clause deriving (L,K) where all the items

in the body of the clause have been proved.

The scasting derive session encodes the Horn clauses generated

for each item in scasting tried. This is done by chaining together

the items in the body of the clause to each other and to the item at

the head of the clause. First, we introduce a new type h method, which

is an identifier to distinguish the different clauses used to prove each

item. For a clause (L,K) :- (L0,K0), (L1,K1), ... (LN,KN) asso-

ciated with h method M, for i ∈ [0, N〉 add to the scasting derive(Li)
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session the predicate snextstep(Ki,L,K,M,Li+1,Ki+1). This associates

the (Li,Ki) with both the head and the next step in the clause; by fol-

lowing the snextstep edges, the entire remainder of the clause’s body

can be recovered from each item.

Then, sfirststep indicates the first item in the clause’s body which

has not yet been proved. Initially, the scasting derive(L0) session is

seeded with sfirststep(K0,L,K,M), and as the first and future clauses

in the body are proved, sfirststep is added for items further in the

body until the end is reached, at which point the head of the clause is

proved and added to scasting proved.

This design ensures that, whenever a new item is proved, we will

immediately be able to fill in scasting proved for any additional items

which used that new item in a subproof. Our analysis strategy will be

as follows:

1. Initialize scasting try with all the casts in the target program

(Sections 7.2).

2. For each function, global, or type h kind loc in the program,

grab a set of items from that location’s scasting try session

which are not in scasting tried, and run local derivation rules

to find the clauses which can derive those items (Section 7.3).

Add these items to scasting tried.

3. For axiom clauses or clauses where all items in the body have al-

ready been proved, add the head of the clause to scasting proved.

For any such item (L,K) added, check for sfirststep predicates

on that item for another clause deriving another item (XL,XK),

and add sfirststep for the next unproved item in the clause. If

there are no more unproved items in the clause, add (XL,XK) to

scasting proved and repeat.
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4. For clauses containing items which have not yet been proved,

encode the missing portions of the clause in scasting derive

using snextstep and sfirststep as described previously. Add

the items which have not yet been proved to scasting try.

5. Repeat steps 2-4 until scasting try equals scasting tried. Af-

ter a while there will be diminishing returns in running the analy-

sis further, at which point the analysis can just be killed. Killing

the analysis in this way does not impact the correctness of the

items in scasting proved.

A weakness here as a model for proving facts about programs is in-

herited from the Horn clauses themselves: this approach cannot handle

mutually dependent items. The clauses introduce dependency edges

between their heads and the items in their bodies, and cycles along

these edges indicate items which may be mutually dependent on one

another. This has not been a problem using this analysis in practice.

7.2 Casting Seed Information

The casting analysis seed information is the scasting explicit ses-

sion, and describes all the explicit casts which occur in the analyzed

program.

session scasting_explicit(FN:string) containing [sexplicit].

predicate sexplicit(P:pp,TP:t_property,FIXED:bool).

The values FN and P give the point where an explicit cast occurs,

and the property TP gives the trace being cast, the type being cast

to, and the condition at P under which the cast occurs. These are

straightforward to generate from the program itself.
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Trickier is the value FIXED, which is true if this is the initial cast

of a freshly allocated heap location, and as such fixes the type of that

location to the type indicated by TP. A cast fixes the type of a trace T

if it meets the following criteria:

1. T was allocated within FN by a callee CFN at an earlier point.

This is given by the wfunc allocate summary information for

the salias write func session of CFN.

2. There are no intervening casts of T between the original allocation

of T and point P within FN. If CFN is a wrapper for a more primitive

allocator CCFN, this includes paths in CFN between the call to CCFN

CFN’s exit point.

3. Similarly, there are no calls between the original allocation of T

and point P within FN where T could escape into the call and be

cast to some type.

Items 1 and 2 can be modelled exactly. For item 3 we approxi-

mate whether T may be cast by a call by checking whether T is either

passed directly as an argument, or if T was assigned before the call to a

structure field or other location reachable from the heap. Since heap-

allocated locations tend to be cast immediately after they are allocated,

this is sufficiently precise.

7.3 Casting Derivation Rules

The purpose of the casting derivation rules is to construct the Horn

clauses by which items (L,K) may be derived. As defined above, the

location L is either a function, global, or type. The kind K which may

be proved at each of these locations is defined as follows:
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type h_kind ::=

hk_prior{TP:t_property,P:pp,GSPLIT:bool}

| hk_prior_inst{I:c_instr,P:pp,CTP:t_property,RECURSE:bool}

| hk_prior_exit{TP:t_property}

| hk_invariant{TP:t_property}

| hk_future{FT:t_trace,C:string,P:pp,FRAME:bool}.

The meaning of the different values of h kind are as follows.

• hl func{FN}: hk prior{TP,P,GSPLIT}: Property TP holds along

all paths in the program reaching point P within FN. Where TP

= l value{T,C,G}, this says that the type of T was previously

fixed to C when G holds along paths to P. GSPLIT indicates to the

analysis whether or not the guard for point P should be examined

and split up when trying to prove TP holds (see Section 7.3.1).

• hl func{FN}: hk prior inst{I,P,CTP,RECURSE}: Property CTP

holds along all paths in the program which invoke call I at point

P. CTP is expressed in terms of the callee of I, e.g. using trace

drf{root{arg{0}}} to refer to the first argument at the call site,

rather than the first argument of FN). RECURSE indicates that this

is a recursive function call (or tail recursive loop call, if FN models

a loop body).

• hl func{FN}: hk prior exit{TP}: Property TP holds along all

paths in the program reaching the exit point of FN. TP is expressed

in terms of the exit state of FN, e.g. trace drf{root{return}}
indicates the return value of FN.

• hl glob{G} or hl comp{C}: hk invariant{TP}: TP is an invari-

ant and can always be assumed to hold at points where the traces
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used in TP are accessed. This may be an invariant over a particu-

lar global or all values of a particular type, depending on whether

the associated location is hl glob or hl comp.

• hl func{FN}: hk future{FT,C,P,FRAME}: For the current and

future locations XT which might be pointed to by FT, the prop-

erty l value{XT,C,true} holds. This is effectively saying that

hk prior holds for the property on drf{FT}, and if FT is ever

written in the future, those writes preserve the type of drf{FT}.
If FRAME is true, the only locations XT to consider are those which

might be pointed to by FT at future points in the current execu-

tion frame for FN, as opposed to the whole program.

The session scasting try is initialized from the seed information

in scasting explicit by adding a hk prior kind for each generated

sexplicit cast. All other derivations are performed in an attempt to

prove these initial h kind values. In the remainder of this section we

describe all the rules by which we can generate Horn clauses deriving

each of the different values of h kind.

7.3.1 Rules for hk prior{P,TP,GSPLIT}

The rules for hk prior form the core of the casting analysis, and most

of the other kinds are expressed in terms of hk prior. Where the

property TP is l value{T,C,G}, we need to ensure that along all paths

going through P, if G holds then the location referred to by T had its

type previously fixed to C.

There are two strategies we can use to handle hk prior. First, we

may be able to trivially prove that the property does or doesn’t hold,

generating either an axiom for the item or no clauses at all for the item.
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The conditions for these trivial proofs are as follows:

• If G is unsatisfiable on all paths through P, the property trivially

holds.

• If T is NULL or uninitialized, the property trivially holds.

• If the type of T was fixed to some type XC within this function on

all paths prior to P, the property holds if C = XC and does not

hold if C != XC.

• If the type of T was otherwise specified as XC by the C type system,

the property may be assumed to hold if C = XC and not hold if

C != XC. It is possible to specify the type of a location without

actually fixing it; some declaration str *x; suggests that x always

points to some location with type fixed to str, but does not

guarantee it. However, if x points to something not of type str,

there must have been an earlier cast of that object to type str,

and the casting analysis will reject that cast instead.

• Similarly, if on all paths prior to P, T is cast to some type XC,

the property may be assumed to hold if C = XC and not hold if C

!= XC. The presence of the cast is no guarantee that the targeted

location was fixed to XC; this is, after all, the property we are

trying to prove. If the type of T was not fixed to XC, the casting

analysis will, however, reject those earlier casts.

If none of the trivial conditions applies, our second strategy for

handling hk prior is to identify all the places where the property could

have been established, by the callers, a callee, or as an invariant, and

propagate the property to each of these. We will construct a separate

Horn clause whose body is all the sources in each of these possible
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directions, and if the entire body of any of the clauses is eventually

proved, the property is proved for our hk prior.

Properties passed in by callers

Properties could have originated with the caller to the current function

if they do not reference any function-local data, i.e. they do not use

uc sum anywhere for the unconstrained result of callee side effects. If,

for each call site XI to this function, at point XP within parent function

PFN, we can prove that hk prior inst{XI,XP,TP,RECURSE} holds for

PFN (setting RECURSE depending on whether PFN is also the current

function), then the hk prior is proved.

The only additional consideration here is incorporating the results of

the polymorphic data analysis. For any call site XI/PFN where the cur-

rent function FN may be called indirectly through function pointer trace

PFT, the polymorphic data analysis might identify one or more struc-

tural relationships wpoly call comp(PFT,C,RFT,RT,AT) which holds

at XI/PFN (the case with wpoly call func is analogous).

If spoly receive comp(C,RFT,RT,AT) has no wpoly fail predi-

cate (there was no failure in generating the relationship correlations),

then for each wpoly receive(FNPTR,XFN,XT) in that session where

FNPTR = FN, it is possible that argument AT to FN is equal to XT within

some call to function XFN, when FN is called by PFN/XI through PFT.

For such call sites PFN/XI where there is such a non-failing struc-

tural relationship and the primary trace in TP contains AT as a subtrace,

instead of generating hk prior inst in the body of the caller, we gen-

erate one hk prior for each correlated XFN/XT, substituting XT for AT

within property TP.

This reasoning contains a logical gap that we need to account for.
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While the polymorphic data analysis tells us the possible values for AT

in terms of XFN/XT, the primary trace of TP may be different from AT

itself, and instead just contain AT as a subtrace. The contents of AT

change between the point where the correlation was introduced on XT in

XFN and the later indirect call to FN. There are a few cases to consider:

• If the primary trace of TP is equal to AT, the locations referred to

in FN and XFN are the same and we don’t need to do anything.

• If the primary trace of TP is a field of AT, i.e. drf{fld{AT,AF,AC}}
for some AF and AC, we need an extra hk future clause with FRAME

= false for fld{AT,AF,AC}, ensuring its value cannot change

before the call to FN.

• Otherwise, we can’t do anything with the polymorphic data, act-

ing as though there was a failure wpoly fail associated with the

structural relationship.

Properties passed out by callees

Properties could have originated with a callee if they reference data that

might have been written by that callee, i.e. they contain uc sum{I,P, }
where I/P indicates the relevant call site. Usually these uc sum values

indicate analysis imprecision which will be resolved by a separate rule

(Section 7.3.1).

There are, however, cases where we are interested in propagat-

ing down into a callee. When the property includes as a subtrace

either a location which we know was allocated by a callee (via the

wfunc allocate summary predicate), or the return value of a callee for

which we cannot inline the write, we can replace that subtrace in the

property with the corresponding callee trace, and prove the hk prior if
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we can prove the hk prior exit with the new property on all possible

targets of the call (which is a singleton set for direct calls).

Global and type invariant properties

If all the traces TP references are rooted at global variables, the hk prior

is proved if we can prove hk invariant{TP} for the hl glob on the ref-

erenced global variables. If all the traces TP references contain some

common structure subtrace STR of type C, the hk prior is proved if we

can prove hk invariant{RTP} for hl comp{C}, where RTP expresses TP

using offset traces from STR.

If there are multiple such hk invariant properties that could be

used to prove TP, we will generate separate Horn clauses for each of

them. This is especially common if TP references only a single trace

(e.g. if G = true), in which case we will add type invariant clauses for

every field access within that trace.

Guard splitting

While the t property type contains a guard component to constrain

the condition where the trace has the specified type, it is generally

counter-productive to constrain this condition maximally. If a trace

is cast to a type under the guard A & B & C & D, we could set the

property condition to A & B & C & D and continue from there. The

main problem this approach runs into is that it allows little reuse of

the resulting derivations; if the trace is also cast to the same type under

the condition A & B & C (i.e. omitting the D component) we have to

generate additional derivations for this new guard, and so on for all

other casts of T and all guards associated with points to which the

property is propagated via derivations.
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The alternative is to split the guard under which an cast occurs,

break it into a set of atomic conditions (ones which do not contain & or

|) such that each atomic condition is weaker than the initial condition

— if the atomic condition is proved, the initial condition is proved. In

the context of the earlier guard, an cast associated with A & B & C & D

is proved if the cast can be proved safe for either A, B, C, or D. Moreover,

when the second cast under condition A & B & C is encountered, all the

earlier derivations can be reused.

Using guard splitting dramatically reduces the size and number of

guards in the derivation properties, with no observed loss in precision

— while a cast that requires some A & B to hold cannot be proved safe

using splitting, we have not encountered a pattern like this in practice.

Properties clobbered by callees

A small number of fields in Linux are important to many casts, but

are treated as impure and have their value clobbered (Section 5.3.2) at

most call sites. If we see a cast of this field after such a call, we could

not normally propagate information about that cast across the call, as

we could not prove the field’s value after the call equals its value before

the call.

An example of this is, somewhat predictably, the file structure;

the private data field of a file is treated as impure, causing problems

in functions such as the following:

// fs/cifs/file.c
ssize_t cifs_user_read(struct file *file, char __user *read_data,

size_t read_size, loff_t *poffset)
{

...

xid = GetXid();
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cifs_sb = CIFS_SB(file->f_dentry->d_sb);
pTcon = cifs_sb->tcon;

if (file->private_data == NULL) {
FreeXid(xid);
return -EBADF;

}
open_file = (struct cifsFileInfo *)file->private_data;
...

}

The function GetXid (actually a macro which calls GetXid) is in

the giant SCC for the kernel (Section 5.3.2), and calls to it are treated

as clobbering file->private data, so that we cannot directly propa-

gate the cast to cifsFileInfo to the entry point of cifs user read

and from there to the points where the private data might have been

assigned.

When a value is clobbered at a call site, and that value points

directly to the primary trace of TP, i.e. the value which will be cast

later, we can handle the clobber by adding an hk future clause with

FRAME = true for the field which is overwritten, ensuring that even if

it does change, its value at exit from the call (and any other clobbering

calls in the current function) will still be a value of the appropriate

type.

7.3.2 Rules for hk prior inst{I,P,CTP,RECURSE}

The rules for hk prior inst are largely expressed with the rules for

hk prior. For cases where the call is not recursive (RECURSE is false),

we use inst trace to convert the callee property into all the caller

properties it could correspond to. There may be zero such properties

if, for example, the callee property describes the type of an argument
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which is NULL at the call site; in these cases the hk prior inst holds

as an axiom. If there are one or more caller properties TP, then the

hk prior inst is proved if all of the hk prior{P,TP,true} can be

proved.

For recursive calls, the hk prior inst is proved if and only if there

is a single caller property TP identical to CTP — the trace and boolean

condition referred to in TP do not change over execution of the function.

This handling of recursion is particularly important for the functions

we use to model loop bodies; with this rule we are making an inductive

argument that if a property holds at entry to the loop, and does not

change over loop iterations, it holds over all iterations of the loop.

7.3.3 Rules for hk prior exit{TP}

The rules for hk prior exit are expressed entirely using the rules for

hk prior. Property TP is expressed using the exit state for the current

function, so we use convert trace to restate the property as zero or

more properties expressed in terms of the function’s entry state. If there

are zero such properties, the hk prior exit holds as an axiom. If there

are one or more properties XTP, then the hk prior exit is proved if,

for the function’s exit point P, all of the hk prior{P,XTP,true} can

be proved.

7.3.4 Rules for hk invariant{TP}

An invariant on a global or type is preserved if all of the writes which can

affect the traces described in the invariant preserve the invariant. For

any such trace T (typically just the trace which must have a particular

type, and its subtraces):
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• For any point P in a function where the trace is directly written,

the invariant is preserved if we can prove hk prior{P,XTP,true},
where XTP is the result of replacing drf{T} in TP with the value

being written to the trace.

• If the trace has its address taken, the invariant is preserved if that

address will not be used for any future writes (we can determine

this with the escape analysis). We are only handling invariants

where the traces in the invariant are always written directly.

• Similarly, if the trace is copied somewhere, and it is not the

primary trace of the property, the invariant is preserved if the

address will no be used for any future writes. For example, if the

invariant is for the type of a global trace glob->a->b, we need to

check at any copy of glob or glob->a, but not glob->a->b. The

former two may lead to glob->a->b being indirectly changed by

a later write, but not the latter.

7.3.5 Rules for hk future{FT,C,P,FRAME}

Proving hk future{FT,C,P} requires not only that drf{FT} have type

C at P but that future values which FT is overwritten with also have type

C. Rather than trying to prove this directly with Horn clauses (which

is pretty difficult), we will make assumptions about the program which

we can’t immediately prove, and encode those assumptions as further

requirements for the program to be type safe (in addition to the initial

program casts).

These assumptions are analysis-dependent casts: casts which are

not explicit in the program but which are added to scasting explicit

and treated exactly like any other cast as the casting analysis proceeds.
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Now, for any hk future we need to establish three constraints:

• hk prior holds for the possible values of FT at P (the trace cur-

rently has type C).

• If FT is a field trace fld{ ,XF,XC}, then updates to that field

are type preserving: whenever the field is written, either the old

value is NULL or uninitialized, or the type of the new value is the

same as the type of the old value. We establish the field is type

preserving by adding analysis dependent casts immediately before

each write of the field, to check the compatibility of the old type

with the new type.

If FT is not a field trace, we cannot prove the hk future clause at

all (in previous sections, hk future clauses were only generated

for field traces).

• If the value of FT at point P might be NULL (or uninitialized), we

need to assert the type of drf{FT} as C, to avoid the problem

of considering the NULL value as having multiple types. Consider

the following toy program:

void foo(base_str *s)

{

s->data = NULL;

bar(s);

str1 *data1 = (str1*) s->data;

}

void bar(base_str *s)

{

s->data = (str2*) malloc(sizeof(str2));

}
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If we prove the cast to str1 with an hk future clause at the call

site to bar, we will add as an assumption an analysis dependent

cast at the assignment within bar, which can also be proved since

the rules for hk prior allow NULL to have any type.

Adding an assertion at the call site to bar that s->data has type

str1 (this is done with a new predicate in scasting explicit)

causes the casting analysis to act as though there is an assignment

at that call site to s->data of a value of type str1, which keeps

us from proving the assignment in bar is type preserving.

If FRAME is true, we only need to worry about type preserving

assignments within the callees of the current function and can

thus add the assertion at point P. Otherwise, we need to add the

assertion at the point where FT was originally allocated, failing

to prove the hk future if we cannot find the allocation.

While in this chapter we do not distinguish the original and analysis-

dependent casts, when giving the analysis results in Section 9.6 we only

describe the original program casts. There are a total of 446 analysis-

dependent casts added to the code (an increase of 1.5%), of which we

are able to prove 327 (73%, about the same as the proof rate for the

program casts).

7.4 Internal Casts vs. External Casts

The Linux kernel along with all other operating systems has to inter-

act with a wide variety of network interfaces, hard disks, and other

storage and I/O devices. The data read in from these devices is of-

ten structured, including such things as packet headers and filesystem

organizational structures. These are declared using struct in various
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kernel headers, and when data is read in from an external device that

data is cast to the struct before being used.

We’ll call these sorts of casts external casts. An external cast is

one where the location that is the target of the cast originated from

a device or from userspace, and the writes to the location that filled

in the structure were not performed directly by the currently running

operating system. This contrasts with internal casts, where the location

being cast was created and written to by the operating system, and has

lived either in memory or in a paging file on disk ever since.

For the purposes of type safety and for this analysis we are only

interested in internal casts. Even in cases where an external cast is

performed, data that originated outside the filesystem cannot be as-

sumed to follow any particular data layout, and will be (or ought to

be) heavily sanity-checked to ensure all the data makes sense within

the layout of the type to which the external cast is made. Without this

sanity checking, a malicious agent or malfunctioning device could take

over or bring down the whole system by passing in some poorly formed

data.

In contrast, the data read after making an internal cast can only

be that which was written by some other function within the running

kernel. In general, no sanity checking needs to be done here and the

kernel will assume after the cast that the data stored in the fields of

the structure is well formed. This assumption is correct provided the

kernel is type safe.

In Section 7.4.1 we give an example of an external cast illustrating

the difficulties in identifying them, and in Section 7.4.2 we explain why

we don’t really have a way to identify the external casts in Linux.



CHAPTER 7. CAST SAFETY 148

7.4.1 External cast example

An important use of external casts is during interaction between a

filesystem driver and the underlying disk. Besides the actual contents

of the user’s files, almost all the data stored on disk is heavily structured

metadata describing file properties, directory hierarchies, and so forth.

The filesystem driver must maintain and keep in sync both the on-

disk structures and their in-memory counterparts. This can be seen in

the ext2 fill super function below, which is called whenever an ext2

filesystem is mounted.

// fs/ext2/super.c
static int ext2_fill_super(struct super_block *sb,

void *data, int silent)
{

struct buffer_head * bh;
struct ext2_sb_info * sbi;
struct ext2_super_block * es;
...
unsigned long logic_sb_block;
unsigned long offset = 0;
...

sbi = kmalloc(sizeof(*sbi), GFP_KERNEL);
if (!sbi)

return -ENOMEM;
sb->s_fs_info = sbi;
memset(sbi, 0, sizeof(*sbi));

...

if (!(bh = sb_bread(sb, logic_sb_block))) {
printk ("EXT2-fs: unable to read superblock\n");
goto failed_sbi;

}

es = (struct ext2_super_block *) (((char *)bh->b_data) + offset);
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sbi->s_es = es;
sb->s_magic = le16_to_cpu(es->s_magic);

if (sb->s_magic != EXT2_SUPER_MAGIC)
goto cantfind_ext2;

...
}

The purpose of ext2 fill super is to create and fill in an in-

memory representation sbi of the filesystem’s superblock (a structure

storing filesystem-wide settings and information), so that later on the

driver can query sbi directly instead of reading from disk (we will

cover superblocks in greater detail in Section 9.6.3). This is done by

performing the following steps in the above function:

1. Allocate and zero out sbi.

2. Get a buffer head bh for the portion of the disk containing the

on-disk superblock. sb bread uses the virtual memory subsystem

to directly map a range of virtual addresses to the disk, storing

this range at bh->b data. When bh->b data is accessed, the disk

blocks containing the superblock will be read and the resulting

data paged in.

3. Cast the pointer bh->b data + offset, which again is referring

to data paged in from disk, into type ext2 super block, which

describes the layout of a well-formed on-disk ext2 superblock.

4. Sanity check the es->s magic value (which is EXT2 SUPER MAGIC

if the filesystem is indeed ext2).

5. Sanity check and store in sbi the numerous other fields in es

(omitted).



CHAPTER 7. CAST SAFETY 150

From an analysis perspective, the key problem here is that the cast

of bh->b data + offset looks exactly like any other cast in the kernel.

Since data on a disk or a network interface or device is often accessed

through specially mapped virtual addresses, there does not seem to be

an easy way to distinguish these accesses from accesses to other kernel-

space data. This is an important problem in and of itself, and we need

a good solution in order to reliably differentiate internal from external

casts.

7.4.2 Identifying external casts

Unfortunately, we don’t have a good mechanical way to identify exter-

nal casts. We can, though, use a crude filter to drop almost all the

external casts, as well as a portion of the internal casts. For any cast

to a structure type str, if str does not contain any pointer fields, ei-

ther directly or transitively through its substructures, we will ignore

the cast and will not try to verify its safety. Pointers are virtual mem-

ory addresses, and devices external to the kernel do not store them in

structures or otherwise care about them (there are a couple exceptions

here where pointers are used in structures to store physical addresses

that need translation).

This filter throws away 16143 casts of the 44910 total downcasts of

pointers to structure types in the kernel, or 36%. This includes all casts

to 3122 different structure types.

From inspection, the majority of these casts do not seem to actually

be external casts, and we can prove their correctness with close to the

same accuracy as we can the casts to pointer types.



Chapter 8

Analysis Implementation

In this chapter we present and give performance metrics for all the anal-

yses that are executed in order to build up the necessary information

for the final casting analysis. We divide up this process into a list of

passes, where each pass takes as input the databases generated by the

previous passes (except the initial frontend), and produces as output

one or more new databases for use by future passes. A few passes mod-

ify one or more of their input databases (these cases are mentioned in

Section 8.1); however, When one pass finishes it will not need to be run

again later on.

In Section 8.1 we briefly describe each of the passes performed and

their output databases, up to and including the final casting analysis. In

Section 8.2 we give timing data for each of the passes, and in Section 8.3

we give timeout data for each of the passes.

151
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8.1 Analyses

Except for the initial frontend, all of the passes are a list of one or

more Calypso .clp analysis files, which are fixpointed together: if anal-

ysis of one function/type/global depends on the analysis result of an-

other function/type/global, it will be repeatedly reanalyzed until the

databases stop changing.

The analysis passes are described in the following subsections, in

the order in which they are performed.

8.1.1 CIL frontend analysis

This pass reads preprocessed C files and produces databases encoding

their syntax (Section 2.2).

• cil body.db: Syntax for all function definitions.

• cil comp.db: Syntax for all struct/union definitions.

• cil enum.db: Syntax for all enum definitions.

• cil glob.db: Syntax for all global variable definitions (excluding

static initializers).

• cil init.db: Syntax for all global variable static initializers.

• cil type.db: Syntax for all typedef definitions.

8.1.2 sumbody

This pass converts loops to tail-recursive functions and produces loop-

free CFGs for each function/loop (Section 2.2.2).
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• cil sum body.db: Syntax for a function definition, and loop-free

CFGs for either its outer body or an inner loop. One database

entry for each outer function body and inner loop.

8.1.3 funptr

This pass runs the function pointer analysis from Chapter 4 and iden-

tifies the possible targets for each indirect call in the program.

• sum init assign.db: All assignments that occur in the static

initializer for each global variable, indexed by that global.

• sum init assign field.db: All assignments to a particular field

that occur in some static initializer, indexed by the field name.

• sum funptr prop.db: Intermediate propagation data.

• sum funptr.db: Possible targets of each indirect call.

8.1.4 sumcallers

This pass generates the sets of possible callers and callees of each func-

tion.

• cil sum caller.db: For each function, the possible callers of

that function.

• cil sum callee.db: For each function, the possible callees of

that function (through either a direct or indirect call).
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8.1.5 callgraph

This pass generates a compact representation of the transitive callees

of each function within the callgraph specified by cil sum callee.db.

This is used to answer ‘can foo transitively call bar’ queries.

• cil callee context.db: Callees from cil sum callee.db with

some optional calling context information, for a partially context-

sensitive callgraph. funptr refine below can generate this con-

text information; if this file is not used, the callgraph generated

here is context-insensitive.

• cil all callee.db: Transitive callees of each function. This is

a (generally small) list of functions which are not called by the

big callgraph SCC (Section 5.3.2), a predicate indicating whether

the big SCC itself is called, and a predicate indicating whether

the big SCC calls this function.

8.1.6 init aliasing

This pass indexes all assignments and other operations performed by

the program so that demand-driven escape queries can be performed

(Chapter 5).

• salias escape.db: For each trace location, all the assignment

edges in the program which have that trace as their source or

target.

• salias used.db: All points where each trace location is used for

a read, write, index, field access, and so forth.
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• salias init.db: All assignments occurring in static initializers.

This is similar to but more precise than the sum init assign.db

computed by the function pointer analysis.

• salias rfld.db: All points where each field has its reverse field

rfld taken (getting the base structure from the field pointer).

• salias fld.db: All points where each field is accessed.

8.1.7 init readonly

This pass generates escape analysis caching/optimization data storing

any per-function read-only data found (Section 5.2.3).

• salias func readonly.db: For each function, which traces passed

into that function have been determined to be read-only.

8.1.8 init relative

This pass generates escape analysis caching/optimization data storing

where each field is written in a relative or non-relative fashion (Sec-

tion 5.2.3).

• salias comp relative.db: For each field g, stores whether there

are non-relative writes to the field (e.g. y->g = ...), as well as

all relative writes to the field (e.g. z->f.g = ...).

8.1.9 usemod comp

This pass identifies and marks all impure and initialization writes to

each field (Section 5.3.2).

• salias write comp.db: Write information for each field.
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8.1.10 usemod func

This pass identifies and marks all impure functions, and the possibly

written traces for semi-pure functions (Section 5.3.2).

• salias write func.db: Write information for each function.

8.1.11 funptr refine

This pass overwrites sum funptr.db with a more precise set of targets

based on the local memory and escape analyses (which now have all

their input databases filled in). For most indirect calls this doesn’t

make a difference, but the extra precision (especially the extra precision

of the escape analysis over the function pointer analysis) is helpful in

some cases.

8.1.12 memory remote

This pass runs the local memory analysis over each function and loop,

generating and storing all information needed to do local memory anal-

ysis queries on that function and loop. This allows both caching of the

results to (slightly) speed up later analysis, and more importantly al-

lows memory analysis queries on a function to be performed even if

that function is not being currently analyzed (e.g. when analyzing foo,

memory queries on the values of traces in bar can be performed).

• smemory remote.db: For each function and loop, stores all data

needed to do queries on the local memory analysis (e.g. val,

inst trace, etc.) on that function/loop. This includes the guard,

eval, lval, assign, and a few other predicates. val itself is not

stored, as this predicate is generated on demand.
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8.1.13 init casting #1

This pass runs an initial pass of the casting seed analysis to generate

seed information for use by the polydata analysis (Section 6.4).

• spoly call try.db: For each function, traces within that func-

tion which will be cast to some type, and in which we want the

polydata analysis to find structural relationships describing.

8.1.14 init poly data

This pass generates all seed information used by the polymorphic data

analysis (Section 6.4).

• spoly call.db: Structural relationships holding at each indirect

call.

• spoly comp.db: Structural relationships we are interested in for

each type.

• spoly func.db: Structural relationships we are interested in for

each type.

8.1.15 poly data

This pass runs the main polymorphic data analysis (Section 6.5), adding

additional entries to spoly comp.db and spoly func.db, and generat-

ing the following databases:

• spoly receive comp.db: Correlations for each relationship in

spoly comp.db.
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• spoly receive func.db: Correlations for each relationship in

spoly func.db.

• spoly receive attribute.db: Correlations found for sysfs at-

tributes (see Section 9.5.3).

8.1.16 init casting #2

This pass generates all seed information used by the casting analysis

(Section 7.2).

• scasting explicit.db: All casts in the program we will be

checking, and all points where the type of a value is fixed.

• scasting explicit field.db: For fields whose value or contents

are cast, the different types and locations of those casts.

• scasting allocate untyped.db: Functions returning freshly al-

located data which do not cast the value before returning.

• scasting try.db: h kind loc/h kind facts we should try to

prove (initially these are just the scasting explicit.db casts).

• scasting post.db: Stores data on casting results for a web-based

user interface.

8.1.17 casting

This pass runs the main casting analysis (Chapter 7), adding additional

entries to scasting try.db and scasting post.db, and generating

the following databases:
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• scasting explicit safe.db: Casts in scasting explicit.db

which were proved safe.

• scasting tried.db: Each item from scasting try.db which

the analysis tried to prove.

• scasting derive.db: Derivation steps for each item added to

scasting tried.db which depends on proofs of one or more other

items in scasting try.db.

• scasting proved.db: Each item from scasting tried.db which

was proved.

8.2 Analysis Performance

The following table gives timing information for each of the analyses

described in Section 8.1. All runs were performed on a cluster; for the

main casting analysis 70 cores were used, and for all other analyses 50

cores were used (see Section 2.4.1).

The ‘hours’ column gives the real time the analysis takes to complete

on the cluster, ‘CPU h’ the total time spent across all cores, and ‘CPU

h used’ the portion of ‘CPU hours’ where cores were doing useful work

(running the Calypso interpreter), rather than communicating with or

waiting on communication from the server.
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Analysis Hours CPU h CPU h Used % Used

sumbody 0:19 15:36 2:26 0.16

funptr 0:34 28:01 9:24 0.34

sumcallers 0:21 16:50 1:49 0.11

callgraph 0:34 26:59 1:02 0.04

init aliasing 2:26 120:13 11:44 0.10

init readonly 1:20 66:15 52:50 0.80

init relative 0:28 22:55 10:07 0.44

usemod comp 0:58 47:55 32:47 0.68

usemod func 1:13 59:41 32:17 0.54

funptr refine 1:12 59:00 40:40 0.69

memory remote 0:46 37:28 16:22 0.44

init casting #1 0:44 35:18 18:06 0.51

init poly data 0:51 38:48 21:40 0.56

poly data 2:51 140:46 108:25 0.77

init casting #2 0:46 35:17 18:19 0.52

casting 16:16 1087:23 304:25 0.28

The efficiency with which an analysis runs on the cluster is primarily

dependent on how much work it does versus how many summaries and

other sessions it updates. At one end of this scale are the callgraph

and init aliasing analyses, which do very little work but write to

many sessions; the former analysis writes a session for every possible

callee of the function it is analyzing, while the latter may write to

several different sessions for every single assignment in the function it

is analyzing. Writing to all these sessions incurs an overhead where the

writes incoming from many different cores have to be merged together
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to give the final contents of the session. Consequently, adding cores has

little benefit and even with 50 cores in use only a small speedup over

the single core performance is realized.

At the other end of this scale, however, are the analyses that do the

most work and are thus the ones we most need to parallelize, such as the

poly data analysis. This is the second most expensive analysis (after

the casting analysis itself) as it looks at all structural relationships each

write might affect and has to try several different approaches to char-

acterizing those effects. However, it writes to and reads from relatively

few sessions and most of its time is spent in the Calypso interpreter

rather than talking to the server.

In the middle of this scale is the casting analysis itself, whose run-

ning time exceeds that of all the other analyses combined. Similar to

the poly data analysis, many proof strategies need to be considered

for each h kind value the casting analysis tries to prove, and for most

functions the casting analysis will end up trying to prove several hun-

dered different h kind values. However, most of these proof strategies

depend on proofs in other functions, types or globals, and analyzing

a single function may require writing to hundreds of sessions in the

scasting derive.db database, dragging down the overall efficiency of

the analysis.

However, the casting analysis has a nice property that the sound-

ness of its result does not depend on termination; the proofs it has

constructed at any given point are all valid. Indeed, the space of proofs

it could try to construct is of unbounded size, and if left to run it will

likely never terminate. For the run presented above and prior runs of

the analysis we simply ran it overnight, killed it and used the results

produced up to that point.

Running the casting analysis for long times can produce additional
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returns, but these diminish quickly. Of the casts which it would eventu-

ally prove safe, the casting run above constructed 50% of those proofs

in the first 11% of its running time, 80% of those proofs in the first

19%, 95% in the first 29%, and 99% in the first 63%. For the 6 hours

after that 63% mark, an average of 36 new proofs per hour were being

constructed (see Section 9.6 for the total numbers of proofs and other

casting information constructed).

8.3 Analysis Timeouts

The following table gives timeout information for each of the analyses

described in Section 8.1. Since all analyses written with Saturn run at

the granularity of a function, type, or global, the Calypso interpreter

can time out on any given function/type/global without affecting the

analysis of other functions/types/globals. However, timing out will

omit from the database any session changes made while analyzing that

function/type/global (or any that would have been made after the time-

out), and for many analyses this will compromise the soundness of their

result.

The ‘sound’ column gives whether the information computed by the

analysis is sound even if there are timeouts, the ‘TO #1’ column gives

the number of timeouts in the initial iteration of the analysis fixpoint

(the first time each function/type/global is scanned), the ‘TO #2+’

column gives the number of timeouts in any subsequent iterations (if

the analysis needs to fixpoint), and ‘TO %’ gives the timeouts as a

fraction of the number of functions and loops in the code base.
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Analysis Sound TO #1 TO #2+ Total TO %

sumbody No 0 n/a 0

funptr No 6 0 6 0.00005

sumcallers No 0 n/a 0

callgraph No 0 n/a 0

init aliasing No 7 n/a 7 0.00006

init readonly Yes 44 n/a 44 0.00035

init relative No 5 n/a 5 0.00004

usemod comp No 56 n/a 56 0.00045

usemod func No 116 4 120 0.00095

funptr refine Yes 150 n/a 150 0.00119

memory remote No 117 n/a 117 0.00093

init casting #1 Yes 134 0 134 0.00107

init poly data Yes 195 n/a 195 0.00155

poly data No 436 86 522 0.00415

init casting #2 No 132 0 132 0.00105

casting Yes 276 602 878 0.00698

For the early analyses computing flow-insensitive function pointer,

callgraph, or aliasing information, the timeout rate is miniscule. The

first analysis which uses the path-sensitive local memory analysis (Sec-

tion 3.3) is usemod func, and after this point there is a set of at least

100-150 functions which time out in all of the analyses. The core of this

set is fairly stable — about 0.1% of the functions in Linux confound the

local memory analysis, and cause it to generate an enormous number of

val, eval, etc. predicates and timeout before we even get to the rules

for the client of the local memory analysis. Typically the amount of
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local memory analysis information is linear in the function size, but it

is worst case exponential and this bad behavior is exposed on this small

set of functions.

Most of these functions are related either to cryptography or to

the internal device- or disk-facing interfaces of drivers and filesystems.

While not analyzing these functions does of course affect the soundness

of the overall results, these functions generally aren’t relevant to the

casting behavior of the system.

More important are the extra timeouts that the poly data analysis

has over the other local-memory based analyses. These extra timeouts

are due to inordinate time processing the writes in the function that

can lead to marking a structural relationship as failed, or to adding

correlations on a structural relationship. When the polydata times

out, these writes will not be considered at all in the final summaries.

However, we will see in Section 9.5 and Section 9.6 that relatively few

of the relationships we consider in the poly data analysis will end up

being used to prove casts; we have looked through many of the roughly

200 extra functions that timed out on the poly data analysis but not

other analyses, and most are involved only with structural relationships

that will not be used by the casting analysis.

The casting analysis itself has the most timeouts. Fortunately,

these timeouts do not affect the soundness of the constructed proofs. If

proving a particular cast requires us to generate a sub-proof for some

function, and analysis of that function times out, we will not have the

sub-proof and can’t prove the original cast. These timeouts are a minor

source of false positives in the overall casting results.



Chapter 9

Analysis Evaluation

The analysis passes described in Section 8.1 run in sequence, each pass

consuming summary information generated by previous analyses, and

producing new summary information to be consumed in turn by the

future analyses.

Besides the final casting analysis, for which we can fix a definite

number on how many casts we found a proof for, the quality of the

remaining intermediate passes is largely determined by how suitable

and precise their summaries are as input to the later passes. A certain

minimum level of precision will be needed from each pass to ultimately

prove the casts, and if that precision is not attained then the poor in-

formation will cascade through and poison the results of the remaining

passes.

There is a cost, though, to making a pass more precise than is

needed by the subsequent passes. Increasing precision will not just

increase computation time but, we have found, will in general (though

not absolutely) make the analysis more complex, harder to understand

and reason about, and less predictable in its behavior.

We want to get the precision of an analysis close to what is needed

165
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from it, and for cases where the code is too complex for us to infer

the information we will ultimately need, we will fill in the gaps with

annotations.

These annotations are trusted, i.e. they are assumed correct by the

passes and if they are in fact wrong we will not detect the problem.

Since they are describing cases we can’t model, they must be trusted.

However, there are relatively few annotations in use by the various

analyses, and we can use the number of annotations the analyses in a

pass require as a measurement of how good a job that analysis does of

modeling the code.

In Section 9.1 we give a general overview of these annotations, in

Sections 9.2 through Sections 9.5 we describe the annotations used and

other results for the analyses leading up to the casting analysis, and in

Section 9.6 we describe the results of the casting analysis itself.

9.1 Annotation Overview

Annotations in Saturn work somewhat differently than in most program

analysis systems. Saturn does not have support for in-code annotations,

where a user adds machine-readable documentation to the code in the

form of type qualifiers or specially formatted comments. Instead, an-

notations are added in the Saturn analyses themselves, in the form of

logic programming rules that are custom-tailored to the program being

analyzed.

While in a sense every analysis in this project has been tailored

to Linux, by its virtue of being our sole target system, most of the

algorithms outlined can be used as-is on other systems written in C or

similar languages. We define an annotation here as a logic programming

rule that targets specific functions, types, or fields in the target system.
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The decision for when to use an annotation instead of writing a

general purpose analysis or ignoring a particular pattern (using a weak

overapproximation) is highly subjective. The annotations we added

were largely due to either patterns that occur only once or very few

times, or to patterns which occur only occasionally but are complex

and involve a lot of code, making them difficult to write analyses for.

In all, there are 360 such annotations used by the analyses in the

passes described in Section 8.1. The following table shows the number

of annotations used for each pass.

Analysis Annotations

sumbody 0

funptr 44

sumcallers 0

callgraph 1

init aliasing 33

init readonly 3

init relative 0

usemod comp 25

usemod func 16

funptr refine 0

memory remote 0

init casting #1 0

init poly data 5

poly data 177

init casting #2 47

casting 9
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The remaining sections of this chapter include descriptions of many

of the annotations incorporated into these passes.

9.2 Function Pointers

The function pointer analysis from Chapter 4 is the simplest analysis

we use but requires relatively few annotations; this analysis illustrates

the value of finding a compromise between analysis complexity and

annotation burden.

As was described in Chapter 4, we will propagate indirect call tar-

gets along assignment edges between variables (globals, locals, argu-

ments, return values), fields, and array indexes of these. If we ever

find additional indirection when propagating backward from an indi-

rect call, or a cast of a function from some other type, the analysis will

fail and require an annotation.

Using this algorithm on Linux finds 98836 possible indirect call tar-

gets and fails on 46 assignments. After annotating these failures the

total number of indirect call targets found is 99118, an increase of 282

targets.

These call targets cover the possible callees of 11976 indirect call

sites. Of these call sites, 2347 (20%) have only a single possible target

(many of these call sites are guarded, so that the function pointer is

also allowed to be NULL), 8039 (67%) have five or fewer possible targets,

and 10480 (88%) have twenty or fewer possible targets. There are some

call sites with many targets; 157 call sites have at least 100 targets, and

21 call sites have at least 500 targets.

Even so, the large number of targets identified for these sites seems

to reflect the actual behavior of the code, not analysis imprecision; these

sites really can call that many different functions. For example, the
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function containing the call site with the most targets is dev attr show,

shown below:

// drivers/base/core.c
static ssize_t
dev_attr_show(struct kobject * kobj,

struct attribute * attr, char * buf)
{

struct device_attribute * dev_attr = to_dev_attr(attr);
struct device * dev = to_dev(kobj);
ssize_t ret = -EIO;

if (dev_attr->show)
ret = dev_attr->show(dev, dev_attr, buf);

return ret;
}

dev attr show is used by the Sysfs filesystem to display information

about currently mounted drivers. Any driver that wants to make its in-

formation accessible to the user must provide one or more (usually many

more) show methods, and store those in device attribute structures

which will eventually be accessed by dev attr show (for more informa-

tion on Sysfs, see Section 9.5.3). There are a total of 1112 such show

methods, and as such 1112 possible targets of this indirect call.

Note that if we were trying to build a context-sensitive call graph

(see Section 5.3.2), we could not narrow down the possible targets of

this indirect call by examining the calling context of dev attr show.

Any of the show methods could be the target here regardless of where

dev attr show is called.

Some of the indirect call target sets can be improved. The later

funptr refine pass uses the escape analysis to find a smaller set of

targets for each call, if possible. This trims away 13913 call targets

(14%) of the original call targets, affecting 881 (7.4%) of the indirect
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call sites. Some of these sites will be important for later analyses, for

example the indirect call in the ctnetlink del conntrack function

from Section 1.2.

Still, by itself the function pointer analysis does a pretty good job.

The main problem is the need to fix the points where it fails with

annotations. While many of the analysis failures could be addressed by

a smarter analysis, there are some that will remain difficult to handle

fully automatically. Most of the failures fall into one of two categories,

described in the following sections.

9.2.1 Casts to void*

If a function pointer is cast from a void* then a failure will result.

In simple cases the void* is always a function, and we can perform

our regular backward propagation to find the targets, such as the func

parameter in the following example:

// drivers/scsi/qla2xxx/qla_os.c
static inline void
qla2x00_start_timer(scsi_qla_host_t *ha, void *func,

unsigned long interval)
{

init_timer(&ha->timer);
ha->timer.expires = jiffies + interval * HZ;
ha->timer.data = (unsigned long)ha;
ha->timer.function = (void (*)(unsigned long))func;
add_timer(&ha->timer);
ha->timer_active = 1;

}

// drivers/scsi/qla2xxx/qla_os.c
int qla2x00_probe_one(...)
{

...
qla2x00_start_timer(ha, qla2x00_timer, WATCH_INTERVAL);
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...
}

In more complex cases the void* is part of a location which could

hold many non-function values. We do not want to conflate the function

pointer with the non-function values that location could have.

// include/linux/moduleparam.h

typedef int (*param_set_fn)(const char *val,
struct kernel_param *kp);

typedef int (*param_get_fn)(char *buffer,
struct kernel_param *kp);

struct kernel_param {
const char *name;
unsigned int perm;
param_set_fn set;
param_get_fn get;
void *arg;

};

// drivers/char/ipmi/ipmi_watchdog.c

static int set_param_str(const char *val, struct kernel_param *kp)
{

action_fn fn = (action_fn) kp->arg;

...
rv = fn(valcp, NULL);
...

}

static int get_param_str(char *buffer, struct kernel_param *kp)
{

action_fn fn = (action_fn) kp->arg;

rv = fn(NULL, buffer);
...
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}

module_param_call(action, set_param_str, get_param_str,
action_op, 0644);

module_param_call(preaction, set_param_str, get_param_str,
preaction_op, 0644);

module_param_call(preop, set_param_str, get_param_str,
preop_op, 0644);

In general the arg field of a kernel param could have thousands of

different values, but the only possible values for kp->arg when passed

into set param str and get param str are the functions action op,

preaction op, and preop op. This is due to a structural relationship

(Section 6.3) on kernel param between its set/get and arg fields,

and module param call is a macro which constructs a kernel param

structure with the specified set, get, and arg fields.

While the poly data pass can compute this and precisely character-

ize the possible arguments to set param str and get param str, this

pass requires the function pointer information to execute, as well as

far more summary information that itself will depend on the function

pointer information.

9.2.2 Non-static arrays of function pointers

Functions might not be pointed to directly by variables or fields, but

through arrays as well. In cases where the arrays have their address

taken and are accessed indirectly the function pointer analysis will fail.

(Cases where the array is always accessed by name are handled without

annotation, e.g. fnptr arr[10]; ... arr[i](data);).

// net/core/wireless.c
static inline iw_handler get_handler(struct net_device *dev,

unsigned int cmd)
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{
...

index = cmd - SIOCIWFIRST;
if(index < dev->wireless_handlers->num_standard)

return dev->wireless_handlers->standard[index];

index = cmd - SIOCIWFIRSTPRIV;
if(index < dev->wireless_handlers->num_private)

return dev->wireless_handlers->private[index];

return NULL;
}

// drivers/net/wireless/hostap/hostap_ioctl.c
static const iw_handler prism2_handler[] =
{

(iw_handler) prism2_ioctl_siwfreq,
(iw_handler) prism2_ioctl_giwfreq,
...

};

// drivers/net/wireless/hostap/hostap_ioctl.c
static const iw_handler prism2_private_handler[] =
{

(iw_handler) prism2_ioctl_priv_prism2_param,
...

};

// drivers/net/wireless/hostap/hostap_ioctl.c
const struct iw_handler_def hostap_iw_handler_def =
{

...

.standard = (iw_handler *) prism2_handler,

.private = (iw_handler *) prism2_private_handler,

.private_args = (struct iw_priv_args *) prism2_priv,

.get_wireless_stats = hostap_get_wireless_stats,
};

In this case the function pointer returned by get handler will be
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called in a subsequent function. This function pointer is always fetched

from either the standard or private fields of a iw handler def, and

these fields are always initialized via static initializers in the same

manner as hostap iw handler def. Handling this code automatically

would require tracking not just assignments to the contents of the ar-

rays of function pointers, but assignments to the standard and private

fields themselves. The escape analysis does this, but itself requires func-

tion pointer information in order to run.

9.3 Memory Model

There are several facets of the local memory model where the assump-

tions we made in the design depend heavily on the code base’s actual

behavior.

• Virtually all pointer arithmetic follows a few well defined patterns,

and can be modelled given the assumption of type safety within

the memory model.

• Almost all possible aliasing between traces at entry to a function

is straightforward to disprove, by looking at the types of the traces

or where the traces might have propagated from.

• Impure functions and fields as used for clobbering traces at call

sites are a good approximation; there really are many functions

which can write to almost anything, and many fields which can

be written almost anywhere.

In the following sections we discuss in turn each of these aspects of

the memory model, and the additional annotations used for the places

where they are deficient.
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9.3.1 Pointer arithmetic

As discussed in Chapter 1, when we assume type safety we are assum-

ing that pointer arithmetic is not used to move between the fields of a

structure, such as to access those fields in turn without explicitly nam-

ing them. This restriction does not rule out the most common uses of

pointer arithmetic, including:

• Iterating through an array or heap-allocated buffer of data, so

long as the iteration does not overflow past the end of the array

and into another structure field or other memory location.

• Using container of to obtain the base address of a structure

from the address of one of its fields.

• Using arithmetic to skip the entire length of a structure to access

data stored after the last field. This is used by several important

structures in Linux; for an example see Section 9.6.1.

There are, however, cases where the programmer intends to iterate

through the fields of a structure by incrementing a pointer. The only

such cases we have found are the memcpy and memset routines endemic

to C and C++ programs, along with similar but more specialized func-

tions such as copy from user and copy to user (for copying memory

between the user and kernel address spaces).

Throughout the Linux kernel, memcpy is called 5740 times, and

memset is called 4887 times (we group memmove in with memcpy; this ac-

counts for 267 calls). Each of these call sites is overwriting some section

of kernel memory, including potentially the fields of a structure. How

well does our type safety definition handle the actual uses of memcpy

and memset?
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There are four categories of calls to memcpy and memset which we

consider. The only one which we model within the memory analysis is

the first. For each category we give the number of calls which fit in the

category.

1. Calls which are definitely updating a structure of a particular

type, copying data to all fields or setting all fields to zero. We

can identify these as the length of the copy will be sizeof(str)

for some struct str, and the updated location will be of type

str. Within the local memory analysis we add annotations for

the memcpy and memset functions to model these calls precisely,

as if they were assigning to each field of the target in turn.

memcpy: 628 calls, memset: 2197 calls. The discrepancy between

the number of calls to memcpy and memset within this category

is due to the common practice of zero’ing out a structure with

memset immediately after allocating it.

2. Calls which are updating a buffer which we can prove will never

be used as a structure. These could be strings, arrays of inte-

gers, or other unformatted data. We can find the possible uses of

an updated buffer with the escape analysis, following the buffer

forward and looking for uses of any fields.

memcpy: 3379 calls, memset: 1603 calls.

3. Calls which are updating a buffer that can only be used as a

structure that does not contain pointer fields. This is the same

rough filter we used in the casting analysis (Section 7.4) to filter

out uses of structured data coming from network interfaces, disk

drives, and other attached devices.

memcpy: 970 calls, memset: 545 calls.
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4. Calls which are updating a buffer which either might be used as

a structure containing pointers, or where we could not figure out

where the buffer escapes to.

memcpy: 763 calls, memset: 542 calls.

The third and fourth categories are those where the memcpy/memset

could affect future reads or writes of structure fields, but which we are

not modelling. These include 2820 total calls to memcpy or memset

within the kernel (27% of all such calls), one for every 32 functions in

the kernel.

Not all of these calls are important to analyses; by examination,

many appear to target memory used for doing device I/O, involving the

same structures used in external casts (see Section 7.4). For example,

637 calls target the data buffers in a buffer head (used for doing disk

I/O, see Section 7.4.1) or an sk buff (used for doing network interface

I/O).

9.3.2 Trace aliasing

The rules we presented for local memory trace aliasing in Section 5.3.1

are rather coarse. For any two pointers p1 and p2 of the same type,

*p1 and *p2 are considered aliased, as well as p1->f and p2->f.

At least for the applications for which we use the local memory

analysis, this coarseness has not been a problem. During analysis, few

aliasing pairs are relevant to either the locations used and updated in

each function.

During the local memory analysis, trace alias queries will be per-

formed between any trace which is updated at a point in the function,

and any trace whose value the analysis wants to know at the point after

the update. The actual traces used for the latter are dependent on the
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client analysis. There is, however, a large baseline set in all the traces

which may be dereferenced later in the function.

Over the 125792 functions and loop bodies analyzed, the local mem-

ory analysis finds 79616 possible aliasing pairs of traces between this

baseline set and the written traces, an average of .63 aliases per func-

tion/loop.

As with the calls to memcpy and memset, a large proportion of these

aliases are irrelevant to our analyses and to most other program anal-

yses. 43296 of the aliases, or 54%, are between elements in arrays of

integers or characters.

20814 (26%) of the total aliases have a field trace fld{ , , } as

one of the two aliased traces. Of these, only 384 aliases are between

a field trace and a non-field trace — it is extremely rare that a field

x.f could alias some pointer *p if both are used in the same function.

The remaining field aliases are between traces with the same field but

different base structures.

6926 of these field aliases are on fields with pointer type. These are

the only places in the kernel, one for every 18 functions, where any x.f

of pointer type could be found to alias another trace modified in that

same function. None of these field aliases, nor any other aliases, have

been too imprecise for later analyses, and we have not had to add any

annotations to improve the behavior of the trace aliasing rules.

9.3.3 Function Purity

Out of a total of the 91384 functions, we have identified 17999 functions

(20%) as semi-pure — we can exactly model the small set of locations

the function might modify. This includes 68% of the functions which

are not part of and do not call into the call graph SCC described in
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Section 5.3.2.

Of the 17999 semi-pure functions, 13816 functions (15% of the total)

are truly pure and do not have any side effects at all.

While a minority in the kernel’s functions, these semi-pure and pure

functions are called far more often in comparison to other kernel func-

tions. Of all calls in the kernel, 30% are to one of the truly pure

functions, and 36% are to a function that is either pure or semi-pure.

For the remaining 64% of calls, though, we have to clobber all lo-

cations that are not stack locals of the function and are not semi-pure

fields of a heap structure.

9.3.4 Field Purity

Out of 15820 structure fields of pointer type written to in the kernel,

we have identified 8874 semi-pure fields (56%), those written to only

shortly after allocation. Out of 52395 fields of integer or character type

written to, 24943 are semi-pure (48%). This large discrepancy gives the

impression of a heap where much of the data is static and unchanging,

in particular the pointer links between objects.

Still, our field purity analysis can get confused and mark fields that

are really semi-pure as impure. The numbers above are underapproxi-

mations, and while the true numbers of such semi-pure fields may not

be much greater, some of the most important pointer fields have the

most complex initialization code, and for these we fall back on annota-

tions.

Annotations

We use 25 annotations for fields of types that we believe are semi-

pure, but for which we cannot prove this. Most of these are due to
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initialization code involving tens to hundreds of functions and numerous

indirect calls; at some point the escape analysis will fail to find the

allocation sites for certain important structures being initialized. Of

particular note are device probing and file creation, which together

account for 19 of the 25 annotations. We give an example for device

probing below.

In order to use an attached hardware device, the kernel must first

probe the device; it has to identify the correct driver to interact with

the device, and initialize various device-specific data structures for the

driver to use. Some of these initialization functions are deep in the call

chain during probing and have complex behavior, causing problems. An

example is snd cmi8330 pcm, which initializes parts of the snd cmi8330

structure used by the driver for certain C-Media sound card chips:

// sound/isa/cmi8330.c
static int __devinit snd_cmi8330_pcm(struct snd_card *card,

struct snd_cmi8330 *chip)
{

struct snd_pcm *pcm;
const struct snd_pcm_ops *ops;
int err;
static snd_pcm_open_callback_t cmi_open_callbacks[2] = {

snd_cmi8330_playback_open,
snd_cmi8330_capture_open

};

...

/* SB16 */
ops = snd_sb16dsp_get_pcm_ops(CMI_SB_STREAM);
chip->streams[CMI_SB_STREAM].ops = *ops;
chip->streams[CMI_SB_STREAM].open = ops->open;
chip->streams[CMI_SB_STREAM].ops.open =

cmi_open_callbacks[CMI_SB_STREAM];
chip->streams[CMI_SB_STREAM].private_data = chip->sb;
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...
}

Type snd pcm ops is a function pointer table used for the PCM

sound abstraction layer. For each substream of the sound card chip,

snd cmi8330 pcm gets a table via snd sb16dsp get pcm ops (which re-

turns the address of one of two global snd pcm ops tables), copies the

table to the substream’s ops field, and changes the ops.open callback.

These updates to the substream’s function pointer table are not likely

to occur while the chip is actually in use.

Indeed, snd cmi8330 pcm is only called while probing the sound

card to which the cmi8330 driver will attach. Several levels up the call

chain, card and chip were created by a call to snd cmi8330 card new:

// sound/isa/cmi8330.c
static struct snd_card *snd_cmi8330_card_new(int dev)
{

struct snd_card *card;
struct snd_cmi8330 *acard;

card = snd_card_new(index[dev], id[dev], THIS_MODULE,
sizeof(struct snd_cmi8330));

if (card == NULL) {
snd_printk(KERN_ERR PFX "could not get a new card\n");
return NULL;

}
acard = card->private_data;
acard->card = card;
return card;

}

The chip acard is stored at card->private data (this is actu-

ally pointing to a section of memory at the end of card), which will

eventually be passed in to snd cmi8330 pcm as chip — At entry to



CHAPTER 9. ANALYSIS EVALUATION 182

snd cmi8330 pcm, it is the case that chip == card->private data.

This use of private data is what confounds the escape analysis when

trying to figure out where chip came from; every function where card

is passed could potentially modify card->private data, changing the

value of chip at entry to snd cmi8330 pcm. There are hundreds of such

functions where card could flow to, and as such we cannot prove within

snd cmi8330 pcm that chip was recently allocated and that the fields

of snd pcm ops are semi-pure. snd pcm ops is an important structure

for hundreds of casts, so we add an annotation marking its fields as

semi-pure.

9.4 Escape Analysis

Since the escape analysis is completely demand driven, it is even harder

to gauge its effectiveness directly than our other analyses. It can and

does break down, for example if we try to use it with the kernel param

example from Section 9.2.1 to find the possible function pointer values

it will find a useless set of thousands of entries.

There isn’t much we can do to address this with annotations; if it is

possible to get a suitable set of entries with the escape analysis, getting

this set depends on the level of precision (values of t escape precision

from Section 5.2). Analyses depending on this information, in partic-

ular the polymorphic data analysis, try the same escape queries at

multiple levels of precision.

The main use for aliasing annotations is for allocator functions; if

we don’t include special treatment for the base allocators then following

any value back to a dynamic allocation will then continue propagating

through the allocator’s internal structures. While this propagation is le-

gitimate, we aren’t interested in the allocator behavior and will assume
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it behaves correctly (returns zeroed or uninitialized data), stopping

propagation at these allocation calls and treating the return values as

fresh locations.

9.5 Polymorphic Data Analysis

Out of the 11976 indirect call sites covered by the function pointer

analysis, 7850 (66%) of these were identified by the init poly data

pass as potentially involving structural relationships — a parameter

to the call was either a void* pointer or was a structure containing a

void* field.

From these call sites, 8830 potential structural relationships were

identified, and an additional 5939 potential relationships were added

due to transitive correlations (see Section 6.5.2), for a total of 14769

potential relationships. Of these, 9601 are between structure fields, and

5168 are between the arguments to a function.

After running the poly data analysis itself to find possible correla-

tions, we find that correlations were successfully found for 10416 (71%)

of the relationships, which includes 5750 (60%) of the structure field re-

lationships and 4666 (90%) of the function argument relationships. Of

the 7850 call sites with potential relationships, correlations were found

for at least one of those relationships at 6883 (88%) of the sites.

Now, most of these relationships will not end up being useful to

the casting analysis; either they don’t capture a property relevant to

polymorphism, or their correlations end up being too overapproximate.

In Section 9.6 we will come back to this question of which relationships

are useful. First, though, we go into the annotations required to get

the polymorphic data results to perform as it does.

The polymorphic data analysis uses annotations more extensively
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than any of the other analyses we present, requiring 177 annotations

total. This is largely due to the variety of polymorphic structures in

Linux and the complexity of their initialization. For a given polymor-

phic structure, our analysis tends to fail to generate a good enough set

of correlations in three ways.

• The actual polymorphism encoded by the structure might not fit

the model of structural relationships our analysis uses (a function

pointer and data trace at a particular offset from the same struc-

ture). We can sometimes fit these cases so that we can capture

the correlations generated by the structure, even if our analysis

of the structure’s internals is largely incomplete.

• If the polymorphism does fit into the structural relationship model,

the way in which the structure is initialized might not fit the in-

ference techniques our analysis uses to find correlations. This

is usually a close fit, and we can use annotations to adjust the

inference to exactly match the initialization.

• If both the polymorphism and initialization fit our model, over-

approximation by other analyses, such as call site clobbering and

escape imprecision, might lead to overly overapproximate corre-

lations which can be handled by annotations.

We give examples for each of these categories of annotations in the

following subsections. We cover the categories in the reverse order from

above, going from the least complex to most complex cases.

9.5.1 Analysis Overapproximation

The same problems we had in analyzing complex initialization code

for finding relatively pure fields are also responsible for a variety of
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overapproximation issues in the polymorphic data analysis. When ini-

tialization of the different fields of a data structure is split across many

functions, we need to have precise knowledge of which fields are unini-

tialized, NULL, or non-NULL at the various execution points in order

to generate precise correlations.

For example, consider again the file creation example we initially

discussed in Section 6.2.

// fs/open.c
static struct file *
__dentry_open(struct dentry *dentry, struct vfsmount *mnt,

int flags, struct file *f,
int (*open)(struct inode *, struct file *))

{
...
f->f_dentry = dentry;
f->f_vfsmnt = mnt;
f->f_op = fops_get(inode->i_fop);
...

if (!open && f->f_op)
open = f->f_op->open;

if (open) {
error = open(inode, f);
if (error)

goto cleanup_all;
}

...
}

The structural relationships we are interested in here are between

the private data field of a file and the read and other fields of that

file’s f op table. The f op is written here in dentry open, and the

private data in the indirect call open.
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The polymorphic data analysis sees the f op write in dentry open

and no private data write, and so will correlate all the possible values

of f op->read (all file read functions in existence) with the input value

f->private data. (Note that simply inlining the possible targets of

open would not fix this issue; some of the open methods do not set

private data, as those target filesystems never use that field).

dentry open is only called during initialization of f, however, and

the only possible value for f->private data at entry to dentry open

is NULL. We cannot detect this; if we could, the polymorphic data anal-

ysis would not add any correlations for the write in dentry open, as

desired.

The reason we can’t determine f->private data is NULL is, again,

tricky initialization code. Most of the time dentry open is called

through dentry open, which directly allocates a file with NULL con-

tents through get empty filp; this case is easy to analyze.

// fs/open.c
struct file *dentry_open(struct dentry *dentry,

struct vfsmount *mnt, int flags)
{

struct file *f;

...
f = get_empty_filp();
if (f == NULL) {

...
}

return __dentry_open(dentry, mnt, flags, f, NULL);
}

Another caller of dentry open, lookup instantiate filp, passes

in as the file the value nd->intent.open.file, a pointer to data allo-

cated by its own callers.
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// fs/open.c
struct file *lookup_instantiate_filp(struct nameidata *nd,

struct dentry *dentry,
int (*open)(struct inode *, struct file *))

{
...
nd->intent.open.file =

__dentry_open(dget(dentry), mntget(nd->mnt),
nd->intent.open.flags - 1,
nd->intent.open.file,
open);

...
}

While the nd->intent.open.file pointer is always either NULL or

points to an empty file in this function, it was allocated on the stack

several levels up the call chain and across potentially multiple indirect

calls. The nameidata is used throughout the lookup/create operation

on a file, which can be very complex for some filesystems such as

NFS.

9.5.2 Unhandled Initialization

Sometimes data structures have important structural relationships, but

the way in which they are initialized is unusual enough to not at all fit

the styles modelled by our inference algorithm. Some of the sound PCM

layer structures we discussed briefly in Section 9.3.4 fit this model. The

snd pcm ops are function pointer tables primarily used by the snd pcm

structure and its children.

// include/sound/pcm.h

struct snd_pcm {
struct snd_card *card;
...
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struct snd_pcm_str streams[2];
...
void *private_data;
void (*private_free) (struct snd_pcm *pcm);
...

};

struct snd_pcm_str {
int stream;
struct snd_pcm *pcm;
/* -- substreams -- */
unsigned int substream_count;
unsigned int substream_opened;
struct snd_pcm_substream *substream;
...

};

struct snd_pcm_substream {
struct snd_pcm *pcm;
struct snd_pcm_str *pstr;
void *private_data;
...
struct snd_pcm_ops *ops;
...
struct snd_pcm_substream *next;
...

};

Each snd pcm has two child snd pcm str structures in its streams

field, and each snd pcm str has a list substream of snd pcm substream

structures linked through the next field. Each object has pointers back

to its parents.

There are important structural relationships between the function

pointers in the ops field of a snd pcm substream and its private data

field, which work in pretty much the same way as the file struc-

tural relationships from Section 6.2. However, writes to the ops and

private data fields of snd pcm substream are not correlated with one
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another in the usual way. Instead of writing to both fields together,

functions initializing the parent snd pcm write to the ops field of all

the associated substreams with the snd pcm set ops helper function,

but only write to the private data of the parent snd pcm.

An example of this is in snd atiixp pcm new, which is called during

device probe and allocates and initializes a new snd pcm.

// sound/core/pcm_lib.c
void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,

struct snd_pcm_ops *ops)
{

struct snd_pcm_str *stream = &pcm->streams[direction];
struct snd_pcm_substream *substream;

for (substream = stream->substream; substream != NULL;
substream = substream->next)

substream->ops = ops;
}

// sound/pci/atiixp_modem.c
static int __devinit snd_atiixp_pcm_new(struct atiixp_modem *chip)
{

struct snd_pcm *pcm;
int err;
...
err = snd_pcm_new(chip->card, ..., &pcm);
if (err < 0)

return err;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,

&snd_atiixp_playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,

&snd_atiixp_capture_ops);
pcm->dev_class = SNDRV_PCM_CLASS_MODEM;
pcm->private_data = chip;
...

}

After this initialization code, the substream will have its ops set
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but not its private data. This state will persist until the substream

is opened in snd pcm open substream, which must be called before

the substream can be used. snd pcm open substream looks up the

substream via snd pcm attach substream, which scans the substreams

in the snd pcm, finds one that is not in use, and sets its private data

to the private data of the parent snd pcm.

// sound/core/pcm_native.c
int snd_pcm_open_substream(struct snd_pcm *pcm, int stream,

struct file *file,
struct snd_pcm_substream **rsubstream)

{
struct snd_pcm_substream *substream;
int err;

err = snd_pcm_attach_substream(pcm, stream, file, &substream);
if (err < 0)

return err;
...
if ((err = substream->ops->open(substream)) < 0)

goto error;
...

}

// sound/core/pcm.c
int snd_pcm_attach_substream(struct snd_pcm *pcm, int stream,

struct file *file,
struct snd_pcm_substream **rsubstream)

{
struct snd_pcm_str * pstr;
struct snd_pcm_substream *substream;

...
pstr = &pcm->streams[stream];
if (pstr->substream == NULL || pstr->substream_count == 0)

return -ENODEV;
...

for (substream = pstr->substream; substream;
substream = substream->next)
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if (!SUBSTREAM_BUSY(substream))
break;

if (substream == NULL)
return -EAGAIN;

...
substream->private_data = pcm->private_data;
substream->ffile = file;
pstr->substream_opened++;
*rsubstream = substream;
return 0;

}

Thus, by correlating a write to the snd pcm->private data with

calls to snd pcm set ops, a PCM driver ensures that when the sub-

stream is eventually opened that the correlation between the value

of private data and the ops used in the snd pcm set ops call will

be introduced as correlations within the snd pcm substream structural

relationship.

To annotate this case, we have to add custom rules to the polymor-

phic data analysis that add correlations for snd pcm substream when

snd pcm->private data is written or snd pcm set ops is called, not

when the ops or private data fields of the snd pcm substream itself

are written.

9.5.3 Unhandled Polymorphism

The most interesting uses of polymorphism are those which our analysis

is not even capable of expressing. There are not many instances of

these, but they are generally big and important and responsible for

many casts we will fail to prove later on (examples are in Section 9.6).

One of these cases, the Sysfs filesystem, we have managed to anno-

tate, providing a mechanism to check the casts performed by clients of
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Sysfs with the limitation that our annotations are, as usual, trusted;

we assume that Sysfs follows the annotated behavior.

Sysfs is a Linux filesystem which provides a mechanism for users

to query and update attributes of the drivers and associated devices

that are currently mounted, by accessing files stored under the /sys

directory. To the driver writer, this functionality is hidden behind a

simple polymorphic interface, which relates a kernel object kobj (each

device used in Sysfs will have its own kernel object) with an attribute

with a name and access mode (read, read/write, etc.)

// include/linux/sysfs.h
int sysfs_create_file(struct kobject * kobj,

const struct attribute * attr)

struct attribute {
const char * name;
struct module * owner;
mode_t mode;

};

The driver can use sysfs create file by passing in the kernel

object for its device and the attribute it wants to associate with the

device.

// drivers/block/aoe/aoeblk.c

static ssize_t aoedisk_show_state(struct gendisk * disk, char *page)
{

struct aoedev *d = disk->private_data;
return snprintf(page, PAGE_SIZE, ...);

}

static struct disk_attribute disk_attr_state = {
.attr = {.name = "state", .mode = S_IRUGO },
.show = aoedisk_show_state

};
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static void
aoedisk_add_sysfs(struct aoedev *d)
{

sysfs_create_file(&d->gd->kobj, &disk_attr_state.attr);
sysfs_create_file(&d->gd->kobj, &disk_attr_mac.attr);
sysfs_create_file(&d->gd->kobj, &disk_attr_netif.attr);
sysfs_create_file(&d->gd->kobj, &disk_attr_fwver.attr);

}

In this example, there is a correlation such that the disk parameter

to aoedisk show state will be equal to the d->gd value as passed into

a call to aoedisk add sysfs. The question is how this happens, what

machinery is hidden behind sysfs create file and the filesystem it-

self to ensure aoedisk show state is called with the right value.

sysfs create file (which we will go into more detail later) cre-

ates a file with the following sysfs file operations operations (see

Section 6.2 for the earlier discussion of the file operations structure).

// fs/sysfs/file.c
const struct file_operations sysfs_file_operations = {

.read = sysfs_read_file,

.write = sysfs_write_file,

.llseek = generic_file_llseek,

.open = sysfs_open_file,

.release = sysfs_release,

.poll = sysfs_poll,
};

Whenever the user tries to read this file, the sysfs read file func-

tion will be called, which will invoke aoedisk show state on the cor-

rect disk argument to get the state of the disk.

// fs/sysfs/file.c

static ssize_t
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sysfs_read_file(struct file *file, char __user *buf,
size_t count, loff_t *ppos)

{
struct sysfs_buffer * buffer = file->private_data;
...
if (buffer->needs_read_fill) {

fill_read_buffer(file->f_dentry,buffer);
}
...

}

static int fill_read_buffer(struct dentry * dentry,
struct sysfs_buffer * buffer)

{
struct attribute * attr = to_attr(dentry);
struct kobject * kobj = to_kobj(dentry->d_parent);
struct sysfs_ops * ops = buffer->ops;
...
count = ops->show(kobj,attr,buffer->page);
...

}

// block/genhd.c

#define to_disk(obj) container_of(obj,struct gendisk,kobj)

static ssize_t disk_attr_show(struct kobject *kobj,
struct attribute *attr, char *page)

{
struct gendisk *disk = to_disk(kobj);
struct disk_attribute *disk_attr =

container_of(attr,struct disk_attribute,attr);

if (disk_attr->show)
disk_attr->show(disk,page);

}

static struct sysfs_ops disk_sysfs_ops = {
.show = &disk_attr_show,
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.store = &disk_attr_store,
};

sysfs read file calls the helper function fill read buffer, which

gets an attribute from the file and performs an indirect call ops->show

to fill in the data from the attribute which will be returned by the file

read. When the attribute being read is disk attr state.attr (or any

other attribute of a gendisk), the ops will point to disk sysfs ops,

and ops->show will call disk attr show. disk attr show backs out

the kernel object pointer to the containing gendisk (d->gd in the call

to aoedisk add sysfs) and the attribute pointer to the containing

disk attribute (disk attr state). disk attr state.show points to

aoedisk show state, completing the call chain from sysfs read file.

This example assumes numerous data invariants which must hold

or else the indirect calls will break. The main concept is that Sysfs will

create a single directory for each device kobject, and a file within this

directory for each attribute added for that kobject.

In order to specify these invariants in more detail, we first need to

lay out the various involved structures and fields.

• file: A file usable for reading/writing (in general, multiple files

may correspond to the same inode). Has fields f dentry for the

dentry used to open it, and private data for filesystem private

data.

• dentry: A directory entry, a particular path used to access some

inode. Has fields d parent for the parent dentry, (the directory

which this was accessed from), and d fsdata for filesystem private

data.

• sysfs buffer: A buffer used by Sysfs to read or write data to

individual attributes. Each file in Sysfs has a sysfs buffer
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as its private data. Has a field ops of type sysfs ops with

operations for reading/writing to it.

• sysfs dirent: Per-dentry private data stored by Sysfs; each

dentry that is not a symbolic link has a sysfs dirent at its

d fsdata. Has a void* field s element for additional data. When

the dentry is for a directory, this field points to a kobject, and

when the dentry is for a file, this field points to a attribute.

The s element fields are accessed through the following helpers

by fill read buffers and other functions.

// fs/sysfs/sysfs.h

static inline struct attribute * to_attr(struct dentry * dentry)
{

struct sysfs_dirent * sd = dentry->d_fsdata;
return ((struct attribute *) sd->s_element);

}

static inline struct kobject * to_kobj(struct dentry * dentry)
{

struct sysfs_dirent * sd = dentry->d_fsdata;
return ((struct kobject *) sd->s_element);

}

The last complication with sysfs dirent is that this structure

maintains a tree hierarchy which mirrors the filesystem hierarchy

(minus any symbolic links). This tree is implemented with doubly

linked lists; each sysfs dirent has a s children entry as the

head of its list of children, and a s sibling entry as its position

in the list of its parent’s children.

Now, the invariants maintained for our example are over three ob-

jects:
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• file: The file accessed by sysfs read file.

• kobject: The kernel object for the device.

• attribute: The attribute for the kobject which can be queried

or updated by accesses to file.

As specified in the descriptions above, for all Sysfs files and directo-

ries the private data pointers refer to particular types of objects. More-

over, the file dentry has a pointer to attribute, and the containing di-

rectory dentry has a pointer to kobject. kobject has a pointer back to

this directory dentry. The only additional concern is making sure the

sysfs ops used by the sysfs buffer in file->private data points

to whichever ops are suited for kobject; this will be a pointer either at

kobject->kset->ktype->sysfs ops, or kobject->ktype->sysfs ops.

For a gendisk kernel object, the kobject->kset->ktype->sysfs ops

points to disk sysfs ops.

The full set of data invariants required is as follows:

1. file->f dentry->d parent->d fsdata is a sysfs dirent

2. file->f dentry->d parent->d fsdata->s element == kobject

3. file->f dentry->d parent == kobject->dentry

4. file->f dentry->d fsdata is a sysfs dirent

5. file->f dentry->d fsdata->s element == attribute

6. file->f dentry->d fsdata is in the s children list of children

for file->f dentry->d parent->d fsdata.

7. file->private data is a sysfs buffer
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8. file->private data->ops is either kobject->ktype->sysfs ops

or kobject->kset->ktype->sysfs ops.

Establishing these invariants takes place in four function calls, which

occur sequentially during execution before the sysfs read file can be

called. We will go over each of these functions.

• Invariant 1,2,3: sysfs create dir makes the directory for kobject.

• Invariant 5,6: sysfs create file attaches an attribute to the

kobject’s directory (despite the name, it does not actually create

a file object).

• Invariant 4: sysfs lookup attaches the dentry which will be

used for file to the attribute.

• Invariant 7,8: sysfs open file sets up the file for reading/writing.

sysfs create dir is called for each kobject which will have at-

tributes accessible via Sysfs.

// fs/sysfs/dir.c

int sysfs_create_dir(struct kobject * kobj)
{

struct dentry * dentry = NULL;
struct dentry * parent;
...

create_dir(kobj,parent,kobject_name(kobj),&dentry);
kobj->dentry = dentry;

}

static int create_dir(struct kobject * k, struct dentry * p,
const char * n, struct dentry ** d)

{
...
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*d = lookup_one_len(n, p, strlen(n));
if (!sysfs_dirent_exist(p->d_fsdata, n))

sysfs_make_dirent(p->d_fsdata, *d, k, mode,
SYSFS_DIR);

...
}

int sysfs_make_dirent(struct sysfs_dirent * parent_sd,
struct dentry * dentry,
void * element, umode_t mode, int type)

{
struct sysfs_dirent * sd;
sd = sysfs_new_dirent(parent_sd, element);

sd->s_mode = mode;
sd->s_type = type;
sd->s_dentry = dentry;
if (dentry) {

dentry->d_fsdata = sysfs_get(sd);
dentry->d_op = &sysfs_dentry_ops;

}
}

static struct sysfs_dirent *
sysfs_new_dirent(struct sysfs_dirent * parent_sd,

void * element)
{

struct sysfs_dirent * sd;
sd = kmem_cache_alloc(sysfs_dir_cachep, GFP_KERNEL);

memset(sd, 0, sizeof(*sd));
atomic_set(&sd->s_count, 1);
atomic_set(&sd->s_event, 0);
INIT_LIST_HEAD(&sd->s_children);
list_add(&sd->s_sibling, &parent_sd->s_children);
sd->s_element = element;

return sd;
}
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// fs/sysfs/sysfs.h
static inline struct sysfs_dirent *
sysfs_get(struct sysfs_dirent * sd)
{

if (sd) {
atomic_inc(&sd->s_count);

}
return sd;

}

sysfs create dir takes the kobject, gets the parent directory en-

try (typically the filesystem root), and, within the helper create dir,

gets the new dentry at *d via lookup one len. sysfs make dirent

creates a new sysfs dirent sd such that (*d)->d fsdata == sd and

sd->s element == k (invariants 1 and 2), and also adds sd to the list of

the parent entry’s children. sysfs create dir fills kobject->dentry

on return from create dir (invariant 3).

As shown in the initial example, sysfs create file is called for

each attribute which is added for a kobject.

// fs/sysfs/file.c

int sysfs_create_file(struct kobject * kobj,
const struct attribute * attr)

{
return sysfs_add_file(kobj->dentry, attr, SYSFS_KOBJ_ATTR);

}

int sysfs_add_file(struct dentry * dir,
const struct attribute * attr, int type)

{
struct sysfs_dirent * parent_sd = dir->d_fsdata;
umode_t mode = (attr->mode & S_IALLUGO) | S_IFREG;

if (!sysfs_dirent_exist(parent_sd, attr->name))
sysfs_make_dirent(parent_sd, NULL, (void *)attr,
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mode, type);
}

sysfs create file just calls sysfs make dirent to, again, make

the new sysfs dirent sd, set its s element to attr (invariant 5), and

add sd onto the list of children of the kobject->dentry->d fsdata

sysfs dirent (invariant 6).

The directory entry that will be used for file itself is not attached

until sysfs lookup is called.

// fs/sysfs/dir.c

static struct dentry * sysfs_lookup(struct inode *dir,
struct dentry *dentry,
struct nameidata *nd)

{
struct sysfs_dirent * parent_sd = dentry->d_parent->d_fsdata;
struct sysfs_dirent * sd;

list_for_each_entry(sd, &parent_sd->s_children, s_sibling) {
if (...) {

...
sysfs_attach_attr(sd, dentry);
break;

}
}

}

static int sysfs_attach_attr(struct sysfs_dirent * sd,
struct dentry * dentry)

{
...
dentry->d_fsdata = sysfs_get(sd);
sd->s_dentry = dentry;
...

}

sysfs lookup takes the dentry for the file which the lookup is on,
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gets the list of attributes for the directory the file is in, and looks for a

matching sysfs dirent sd, which it attaches to the dentry (invariant

4).

Finally, after lookup then sysfs open file will be called on the

file to prepare it for reading/writing.

// fs/sysfs/file.c

static int sysfs_open_file(struct inode *inode, struct file *filp)
{

return check_perm(inode,filp);
}

static int check_perm(struct inode *inode, struct file *file)
{

struct kobject *kobj =
sysfs_get_kobject(file->f_dentry->d_parent);

struct sysfs_buffer * buffer;
struct sysfs_ops * ops = NULL;
...

if (kobj->kset && kobj->kset->ktype)
ops = kobj->kset->ktype->sysfs_ops;

else if (kobj->ktype)
ops = kobj->ktype->sysfs_ops;

...

buffer = kzalloc(sizeof(struct sysfs_buffer), GFP_KERNEL);
if (buffer) {

buffer->needs_read_fill = 1;
buffer->ops = ops;
file->private_data = buffer;

}
...

}

sysfs open file allocates and fills in the sysfs buffer for the file

(invariant 7), setting the ops field to the sysfs ops associated with the
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parent directory’s kobject (invariant 8). (sysfs get kobject func-

tions as to kobj from earlier, except with special handling for symbolic

links.)

Thus, all the invariants required for the call to sysfs read file

to invoke aoedisk show state correctly are established by prior calls

setting up the filesystem structure.

9.6 Casting Analysis

The population of downcasts we are interested in proving the safety of

are those casting to a structure type which transitively contains any

pointer fields (for the rationale behind this, see Section 7.4.2). This

includes a total of 28767 casts in the version of Linux we analyzed,

including casts to 2723 different types. Of these casts we are able to

prove 21637 as safe, 75.2% of the total. (As was described in Section 1.4,

there are a few caveats to the word ‘prove’ here). This leaves 7130 casts

as possibly unsafe.

Of the proved casts, 4014 (19%) are fixing the type of a location

immediately after it is created by, e.g. kmalloc. The remainder are

largely non-trivial to prove correct, owing in large part to the extensive

use of structures. Points which directly cast the value of a structure

field include 16673 (58%) of the total casts, 11615 (54%) of the casts

we are able to prove, and 5058 (71%) of the casts we are not able to

prove.

Moreover, these casts are concentrated in a relatively small number

of fields. Only 580 fields have any casts at all on them. Of the 28767

total casts, 13717 (48%) are on a set of 51 fields with at least 50 casts

each, and 10333 (36%) are on a set of 17 fields with at least 200 casts

each.
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For the missed casts, 215 fields have at least one missed cast. Of the

7130 missed casts, 3444 casts (48%) are on a set of 24 fields with at least

50 missed casts each. One of these fields is the file->private data

field; in total there are 970 casts of this field, of which we cannot prove

88.

As significant as the numbers of casts of fields are, they still exclude

casts which are only indirectly involved with structures — the value be-

ing cast came from a structure but was copied through one or more func-

tion arguments before the actual cast. An example is the timer list

structure from Section 1.1, where saa7146 buffer timeout casts its

first argument after it was copied from a structure field by the parent

function run timers.

We can get a better handle on these more indirect casts by looking at

the population of casts we were able to prove where that proof depends

on some structural relationship the polymorphic data analysis captured.

This includes a total of 8754 (40%) of the proved casts. Of this group,

1755 casts are like saa7146 buffer timeout and only indirectly depend

on a structure field.

As with void* structure fields, there is a small group of structures

with polymorphic relationships responsible for most of the proved casts

(not surprisingly, these two sets have significant overlap). 173 different

structures have some associated relationship we used to prove at least

one cast. Of the 8754 casts proved using polymorphism, 7521 (86%)

use relationships from a set of 26 structures used to prove 50 or more

casts each, and 6000 (69%) use relationships from a set of 10 structures

used to prove 200 or more casts each. This latter set includes both

the file structure (used to prove 736 casts) and timer list structure

(used to prove 408 casts).

Understanding casts requires us to understand precisely how these
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void* pointers flow through the heap, being stored by one function

and eventually read by some other function far away in the call graph.

Handling these data structures requires us to build analyses that both

closely model the common case (most of the 173 polymorphic data

structures) and allow us to use annotations to account for the quirks

of the most important and frequently used structures.

In Section 9.6.1 we describe the net device, a structure with some

quirks that we are able to model very well and prove more casts on than

any other structure. In Sections 9.6.2 and 9.6.3 we describe the device

and super block structures, for which this approach breaks down due

to imprecision we cannot resolve with annotations. We miss more casts

on these two structures than any other, and while these are still a small

fraction of the missed casts, we feel they are somewhat representative

of the remaining difficulties in analyzing complex code.

9.6.1 Net device allocation

In almost all cases structure allocation works as described in Section 7.2,

where the primitive allocators are called with maybe a few wrappers and

the result immediately cast to a new type. A few structures use a more

ad hoc style of allocation, where a single dynamic allocation is used to

store several structures of different types. This is uncommon but the

cases where it is used are important, and the most important such case

is the net device structure, illustrated by the following example cast:

// drivers/net/bnx2.c
static int
bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
{

struct bnx2 *bp = netdev_priv(dev);
...
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if (unlikely(bnx2_tx_avail(bp) < ...)) {
...

}
...

}

// include/linux/netdevice.h

#define NETDEV_ALIGN 32
#define NETDEV_ALIGN_CONST (NETDEV_ALIGN - 1)

static inline void *netdev_priv(struct net_device *dev)
{

return (char *)dev + ((sizeof(struct net_device)
+ NETDEV_ALIGN_CONST)

& ~NETDEV_ALIGN_CONST);
}

bnx2 start xmit casts the result of netdev priv and proceeds to

use that value. However, netdev priv does not access a field of the

device, but advances the dev pointer past the end of its structure and

returns that value.

This is safe to do because when dev was allocated a larger size was

used than sizeof(net device). This allocation was performed by a

call to alloc etherdev in bnx2 init one (note that bnx2 init one

sets the hard start xmit field of the device to bnx2 start xmit, in-

troducing a structural correlation so that bnx2 start xmit will later

be called with this same device).

// drivers/net/bnx2.c
static int __devinit
bnx2_init_one(struct pci_dev *pdev,

const struct pci_device_id *ent)
{

struct net_device *dev = NULL;
...
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dev = alloc_etherdev(sizeof(*bp));
...

dev->open = bnx2_open;
dev->hard_start_xmit = bnx2_start_xmit;
dev->stop = bnx2_close;
...

}

// net/ethernet/eth.c
struct net_device *alloc_etherdev(int sizeof_priv)
{

return alloc_netdev(sizeof_priv, "eth%d", ether_setup);
}

// net/core/dev.c
struct net_device *alloc_netdev(int sizeof_priv, const char *name,

void (*setup)(struct net_device *))
{

void *p;
struct net_device *dev;
int alloc_size;

alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST)
& ~NETDEV_ALIGN_CONST;

alloc_size += sizeof_priv + NETDEV_ALIGN_CONST;

p = kzalloc(alloc_size, GFP_KERNEL);
if (!p) {

printk(KERN_ERR "alloc_dev: Unable to allocate device.\n");
return NULL;

}

dev = (struct net_device *)
(((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);

dev->padded = (char *)dev - (char *)p;

if (sizeof_priv)
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dev->priv = netdev_priv(dev);

setup(dev);
strcpy(dev->name, name);
return dev;

}

While the size of the private data area of the net device is set by

the sizeof priv argument to alloc netdev, we will not be able to

determine what type that private data should be treated as until we

get to the call in bnx2 init one. We use a few annotations to look

for calls to alloc etherdev or alloc netdev where the private data

size is sizeof(some type), and then fix the type of the result’s private

data to that some type. This is just a guess, though it is safe to guess

here; if we pick the wrong type we will end up failing to prove casts

later on.

Besides net device, we have seen only a few other structures using

an allocation scheme similar to this. Rather than build an analysis

specifically for these allocators, it’s best then to just annotate the allo-

cation functions appropriately. net device allocation requires 18 an-

notations in the init casting pass (alloc netdev has several other

wrappers), but these annotations have a huge benefit. We are able

to prove a total of 1391 casts using polymorphism in the net device

fields, all of which would fail without these annotations.

9.6.2 Device data

The most important field we are not able to prove most casts on is

the private data of device drivers. In Linux each installed device has

a device struct associated with it, as well as a device driver which

includes the function pointers used to interact with that device. The
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device struct is pretty thin, with few fields other than those to sup-

port a device tree hierarchy and to store private data for the driver

and its associated interfaces. The field we are most interested in is

driver data, which stores driver private data for the device.

// include/linux/device.h

struct device {
struct klist klist_children;
struct klist_node knode_parent;
struct klist_node knode_driver;
struct klist_node knode_bus;
struct device * parent;
...

struct bus_type * bus;
struct device_driver *driver;
void *driver_data;
void *platform_data;
void *firmware_data;
...

};

static inline void *
dev_get_drvdata (struct device *dev)
{

return dev->driver_data;
}

static inline void
dev_set_drvdata (struct device *dev, void *data)
{

dev->driver_data = data;
}

struct device_driver {
const char * name;
struct bus_type * bus;
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...
int (*probe) (struct device * dev);
int (*remove) (struct device * dev);
void (*shutdown) (struct device * dev);
int (*suspend) (struct device * dev, pm_message_t state);
int (*resume) (struct device * dev);

};

There are 778 casts of the driver data field (almost all done through

the dev get drvdata method) which we are not able to prove. These

are largely due to a technique for constructing and storing devices

and drivers which is not apparent from the definitions of device and

device driver themselves. Instead of directly allocating a device

and device driver and including in these structures whatever data is

needed for the driver to function (as in file and the other structures

we have examined), the device and device driver are embedded in

outer structures representing a more specific class of devices, and it is

in these wrapper classes where most of the work goes on.

An example of the use of these wrappers is for USB devices, which

are responsible for about one third of the driver data casts we miss.

The wrappers for a USB device are usb interface and usb driver,

which contain, respectively, device and device driver structures as

inner fields. (usb interface structures are not one-to-one with the

physical USB devices that are plugged in; a physical device can have

multiple interfaces, in which case there will be multiple usb interface

devices for it).

// include/linux/usb.h

struct usb_interface {
struct usb_host_interface *altsetting;
struct usb_host_interface *cur_altsetting;
unsigned num_altsetting;
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...

struct device dev;
struct class_device *class_dev;

};

static inline void *usb_get_intfdata (struct usb_interface *intf)
{

return dev_get_drvdata (&intf->dev);
}

static inline void usb_set_intfdata (struct usb_interface *intf,
void *data)

{
dev_set_drvdata(&intf->dev, data);

}

struct usb_driver {
const char *name;

int (*probe) (struct usb_interface *intf,
const struct usb_device_id *id);

void (*disconnect) (struct usb_interface *intf);
...

struct device_driver driver;
unsigned int no_dynamic_id:1;

};

The USB device driver methods prove, disconnect and so forth

take a usb interface directly, and principally work with that interface,

rather than the device that is being wrapped. An example of such a

driver is the driver for the Pegasus USB-to-ethernet adapter.

When the interface is disconnected (or at any other intermediate

operation on the device), pegasus disconnect is called where the inner

device’s driver data points to a pegasus structure. This property

was established by a call to usb set intfdata when the device was
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originally probed. The pegasus struct is actually the private data of a

net device created by the driver, as described in Section 9.6.1.

// drivers/usb/net/pegasus.c

static void pegasus_disconnect(struct usb_interface *intf)
{

struct pegasus *pegasus = usb_get_intfdata(intf);
...

unregister_netdev(pegasus->net);
...
free_netdev(pegasus->net);

}

static int pegasus_probe(struct usb_interface *intf,
const struct usb_device_id *id)

{
struct usb_device *dev = interface_to_usbdev(intf);
struct net_device *net;
pegasus_t *pegasus;
...

net = alloc_etherdev(sizeof(struct pegasus));
if (!net) {

dev_err(&intf->dev, "can’t allocate %s\n", "device");
goto out;

}

pegasus = netdev_priv(net);
memset(pegasus, 0, sizeof (struct pegasus));
...
pegasus->intf = intf;
pegasus->usb = dev;
pegasus->net = net;
...

usb_set_intfdata(intf, pegasus);
...

}
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static struct usb_driver pegasus_driver = {
.name = driver_name,
.probe = pegasus_probe,
.disconnect = pegasus_disconnect,
...

};

After analyzing the wrapper which calls pegasus disconnect (omit-

ted), we can determine that pegasus disconnect is only called when

it is equal to this expression:

container_of(intf->dev.driver,usb_driver,driver)->disconnect

The case is similar with pegaus probe. We can thus model the

transfer of data from pegaus probe to pegasus disconnect with struc-

tural relationships between the intf->dev.driver data and these two

function pointers.

The problem is in figuring out the possible correlations for these re-

lationships. These relationships refer to the value of the driver data

field, of course, but this field is used and written by drivers for many

other non-USB devices, and if we can’t prove these other writes can’t

affect these relationships, we will end up polluting the structural cor-

relations with values for driver data that cannot actually be passed

to pegasus disconnect, and cannot prove the cast.

There are several dozen such polluting writes, with an example as

hp100 eisa probe.

static int __init hgafb_probe(struct device *device)
{

struct fb_info *info;
...

info = framebuffer_alloc(0, NULL);
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if (!info) {
iounmap(hga_vram);
return -ENOMEM;

}

...
dev_set_drvdata(device, info);
return 0;

}

There is no indication from this function or its callers whether the

device passed to it might point to the same intf->dev as is used by

pegasus disconnect, so we will treat the data in pegagus disconnect

as possibly having type fb info. It would be possible to build a logic

that could distinguish the different classes of devices from one another

at the points where they are probed, but this logic would have limited

applicability; the device is the only place in Linux (or anywhere else)

we have seen this coding pattern.

9.6.3 Filesystem superblocks

Another important field that we are not able to handle is the private

data field of a filesystem super block. Each mounted filesystem in

Linux is associated with a superblock, a structure that holds data about

both the filesystem’s in-memory status (active and dirty inodes and

files, etc.) and its on-disk structure and metadata (block sizes, flags,

etc.). The superblock contains a field s fs info for storing data private

to the particular filesystem that is mounted.

// include/linux/fs.h
struct super_block {

...
struct super_operations *s_op;
...



CHAPTER 9. ANALYSIS EVALUATION 215

struct list_head s_inodes;
struct list_head s_dirty;
...
void *s_fs_info;
...

};

There are 561 casts of the s fs info field which we are not able to

prove. One of these is in the EXT2 SB function below, which accesses

the private data of a superblock for an ext2 filesystem (this wrapper

is called in 131 places, though we only count it as a single cast, in

effect artificially lowering the number of casts we end up finding for the

s fs info field; there aren’t many wrapper functions like this).

// include/linux/ext2_fs.h
static inline struct ext2_sb_info *EXT2_SB(struct super_block *sb)
{

return sb->s_fs_info;
}

// include/linux/ext2_fs_sb.h
struct ext2_sb_info {

...
struct buffer_head ** s_group_desc;
unsigned long s_mount_opt;
uid_t s_resuid;
gid_t s_resgid;
...

};

We fail to prove The EXT2 SB cast and other casts of s fs info

largeley because the superblock is not accessed ‘directly’ through a

method on its super operations but indirectly through methods on

the inode structures it contains. Each inode contain in-memory status

for a file or directory, independent of the path name used to reach

that file/directory, and for each file/directory currently in use for the
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mount, there is an inode allocated and stored in the s inodes list of

that mount’s super block.

// include/linux/fs.h

struct inode {
...
struct list_head i_sb_list;
...
struct inode_operations *i_op;
const struct file_operations *i_fop;
struct super_block *i_sb;
...

};

struct inode_operations {
...
int (*mkdir) (struct inode *,struct dentry *,int);
int (*rmdir) (struct inode *,struct dentry *);
...
int (*setattr) (struct dentry *, struct iattr *);
int (*getattr) (struct vfsmount *mnt, struct dentry *,

struct kstat *);
...

};

An example use of EXT2 SB when accessed through an inode is

in ext2 acl chmod, which checks the s mount opt flags of the an in-

ode’s superblock before modifying the access control list for that in-

ode. ext2 acl chmod is called indirectly by notify change via the

inode->setattr method.

// fs/ext2/acl.c
int
ext2_acl_chmod(struct inode *inode)
{

struct posix_acl *acl, *clone;
int error;
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if (!(EXT2_SB(inode->i_sb)->s_mount_opt & EXT2_MOUNT_POSIX_ACL))
return 0;

if (S_ISLNK(inode->i_mode))
return -EOPNOTSUPP;

...
}

// fs/ext2/inode.c
int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
{

struct inode *inode = dentry->d_inode;
int error;

...
error = inode_setattr(inode, iattr);
if (!error && (iattr->ia_valid & ATTR_MODE))

error = ext2_acl_chmod(inode);
return error;

}

// fs/attr.c
int notify_change(struct dentry * dentry, struct iattr * attr)
{

struct inode *inode = dentry->d_inode;
...

if (inode->i_op && inode->i_op->setattr) {
error = security_inode_setattr(dentry, attr);
if (!error)

error = inode->i_op->setattr(dentry, attr);
}
...

}

// fs/ext2/namei.c
struct inode_operations ext2_dir_inode_operations = {

...

.mkdir = ext2_mkdir,
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.rmdir = ext2_rmdir,

...

.setattr = ext2_setattr,

.permission = ext2_permission,
};

We can represent the expectation within the setattr method about

the type of the superblock’s private data as a structural relationship on

inode between .i sb->s fs info and .i op->setattr, and need to

look for writes to the i sb, s fs info, i op and setattr fields which

may introduce correlations for this relationship. All of these but i op

can be handled fairly easily. i sb and s fs info are only written very

shortly after the inode and super block are allocated, respectively,

and setattr is only written during static initialization.

Understanding the writes to i op requires some highly specialized

reasoning which transcends many functions, similar to the device case

and unlike the other specialized structures we have described such as

net device and the Sysfs attribute. In-memory inode structures can

be created in two main ways by filesystems: either an existing on-disk

inode is opened and the in-memory structure is created for that on-disk

structure, or a new file or directory inode is created, which will create

first the in-memory inode and then later write out the on-disk one.

For ext2, the former is done through ext2 read inode. If the

iget function fails to find an in-memory inode for an inode number

ino in the superblock, it will create a new inode via alloc inode,

which sets the i sb to the superblock passed to iget and sets the

i ops to the empty iops empty inode operations. iget then calls

ext2 read inode through the superblock’s operations to fill in the i op

and other fields with their final values.

// fs/ext2/inode.c
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void ext2_read_inode (struct inode * inode)
{

...
if (S_ISREG(inode->i_mode)) {

inode->i_op = &ext2_file_inode_operations;
...

} else if (S_ISDIR(inode->i_mode)) {
inode->i_op = &ext2_dir_inode_operations;
...

}
else if (S_ISLNK(inode->i_mode)) {

...
}
...

}

// include/linux/fs.h
static inline struct inode *
iget(struct super_block *sb, unsigned long ino)
{

struct inode *inode = iget_locked(sb, ino);

if (inode && (inode->i_state & I_NEW)) {
sb->s_op->read_inode(inode);
unlock_new_inode(inode);

}

return inode;
}

// fs/inode.c

struct inode *iget_locked(struct super_block *sb, unsigned long ino)
{

struct hlist_head *head = inode_hashtable + hash(sb, ino);
struct inode *inode;

inode = ifind_fast(sb, head, ino);
if (inode)
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return inode;

return get_new_inode_fast(sb, head, ino);
}

static struct inode *
get_new_inode_fast(struct super_block *sb, struct hlist_head *head,

unsigned long ino)
{

struct inode * inode;

inode = alloc_inode(sb);
if (inode) {

...
}
return inode;

}

static struct inode *alloc_inode(struct super_block *sb)
{

static struct address_space_operations empty_aops;
static struct inode_operations empty_iops;
static const struct file_operations empty_fops;
struct inode *inode;

if (sb->s_op->alloc_inode)
inode = sb->s_op->alloc_inode(sb);

else
inode = (struct inode *)

kmem_cache_alloc(inode_cachep, SLAB_KERNEL);

if (inode) {
...

inode->i_sb = sb;
...
inode->i_op = &empty_iops;
inode->i_fop = &empty_fops;
...
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}

return inode;
}

If we know that ext2 read inode and other read inode functions

are always called through the pointer inode->i sb->s op->read inode

(we need an annotation for this, as we can’t model the assignment of

i sb by alloc inode within iget itself), then to get the correlations

between s fs data and i op we just need the possible correlations be-

tween .s op->read inode and .s fs data within superblock, which

we will be able to infer with the polymorphic data analysis as usual.

The second case for inode creation does not directly involve the

superblock. New file and directory inodes are created through the

inode operations of the directory inode which will contain them, and

the inode operations methods for that directory inode will copy its

i sb pointer to the i sb of the newly created inode.

// fs/namei.c
int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{

...
error = dir->i_op->mkdir(dir, dentry, mode);
if (!error)

fsnotify_mkdir(dir, dentry);
return error;

}

// fs/ext2/namei.c
static int ext2_mkdir(struct inode * dir, struct dentry * dentry,

int mode)
{

struct inode * inode;
int err = -EMLINK;
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if (dir->i_nlink >= EXT2_LINK_MAX)
goto out;

inode_inc_link_count(dir);

inode = ext2_new_inode (dir, S_IFDIR | mode);
...

inode->i_op = &ext2_dir_inode_operations;
inode->i_fop = &ext2_dir_operations;
...

}

// fs/ext2/ialloc.c
struct inode *ext2_new_inode(struct inode *dir, int mode)
{

struct super_block *sb;
...
struct inode * inode;
...

sb = dir->i_sb;
inode = new_inode(sb);
if (!inode)

return ERR_PTR(-ENOMEM);

...
return inode;

}

// fs/inode.c
struct inode *new_inode(struct super_block *sb)
{

struct inode *inode;

...
inode = alloc_inode(sb);
if (inode) {

...
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list_add(&inode->i_sb_list, &sb->s_inodes);
...

}
return inode;

}

The relationship between the various inode operations fields of

an inode and the i sb->s fs info are in effect mutually dependent,

where the value for setattr depends on the value for mkdir and on up

the directory tree to where the inode was read from disk. This mutual

dependency is not by itself a problem; file and other structures have

similar dependencies, where the value read by read is that which was

written by open.

The difference is that for inode operations the inodes involved

are different from one another, and to follow the dependencies we need

to show they share the same i sb superblock. Proving this fact is

very difficult; while we could annotate alloc inode and new inode

and maybe some other special cases as filling in the i sb, we also need

to account for all their wrappers going back up to the mkdir or similar

indirect call. These additional functions include ext2 new inode and

several dozen other functions.

As with the device case, the problem here is not one of the expres-

siveness of the summary information for capturing the relationships we

need, but rather requiring too many annotations to ensure we get a

sufficiently precise inference of those summaries.
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Related Work

C and C++ are alone among the widely used languages today in not

providing type safety guarantees. Consequently, research has gone into

ensuring either that C programs are type safe, and in replacing C with

similarly expressive type safe alternatives. Most of this work focuses

not just on type safety, but memory safety as well (ensuring NULL or

dangling pointers are not dereferenced, buffers do not overrun, and so

forth).

10.1 Checking type safety in C

Siff et. al. [25] describe rules for physical subtyping in C and examine

the casts in several hundred thousand lines of code. They find that

about 85% of the downcasts involving structure types in C are between

void* or char* and a structure, rather than between different structure

types. In the Linux kernel version we analyzed we found far fewer

casts involving structure subtyping — just 459 out of 44910 casts, or

1%, and involving just 44 different supertypes. For these casts we use

the same physical subtyping rules as [25] to determine compatibility

224
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between the structures. However, rather than just counting the number

of downcasts in a program our interest is in proving these casts correct.

Loginov et. al. [19] compute type information for C programs at run-

time and check the program’s behavior against these types to find type

safety violations. Since virtually any access in C might be type unsafe,

virtually all memory accesses are instrumented by this method, lead-

ing to an average overhead of greater than 20x the original program’s

runtime.

HAVOC [18] is a static analysis system for C programs, which uses

function preconditions, postconditions, and loop invariants to perform

modular verification of memory safety and other properties. HAVOC

has recently been used to verify type safety for a few small Windows

device drivers [5]. HAVOC provides far stronger guarantees about a

program than the casting analysis we present; we are only checking

downcasts to structure types, while HAVOC checks these as well as

downcasts to other types, use of the container of macro to jump to a

structure’s base pointer, buffer overflows, and all other ways type safety

might be violated.

However, in order to completely verify 5000 lines of code, HAVOC

required 35 changes to the code, 36 trusted annotations (annotations

which, like our annotations, will not be checked for correctness), and

153 untrusted annotations (those which will be checked for correctness).

At these rates, annotating and checking a system the size of the Linux

kernel would require several hundred thousand lines of annotations.

10.2 C extensions for checking type safety

CCured [7, 21] uses pointer type qualifiers in combination with runtime

checks to check type and memory safety in C with fairly low overhead.
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Pointers used in downcasts are transformed into ‘fat’ WILD pointers,

structures which contain both the pointer and additional bounds and

runtime type information to perform the appropriate checks at accesses

to the pointer. The initial version of CCured [21] would mark as WILD

any pointer whose value might have been used in a downcast or might

in the future be downcast (according to a global flow- and context-

insensitive algorithm). For polymorphic structures such as file and

timer list, this would encompass all uses of the data which at any

point were stored in their void* data fields.

Subsequent improvements [7] ensured that most pointers which are

downcast are not fully WILD, but instead have limited runtime type in-

formation attached for checking the downcast is safe. After the down-

cast and checks are performed, the result is a SAFE pointer which can

be accessed in the future with few additional checks.

Deputy [6] is a type system for C which uses a more lightweight ap-

proach than CCured, inserting runtime assertions where necessary but

without changing the in-memory layout of pointers and other struc-

tures. When dealing with downcasts from one type to another, Deputy

can soundly check the cast at compile time provided the pointers are

annotated with correct dependent types. The dependent types used

by Deputy cover the parametric polymorphism as used in many of the

Linux kernel data structures [3], but not other, rarer constructs such as

pointers whose type depends on a program condition. Moreover, even

if suitable polymorphic types are assigned for the various polymorphic

structures in Linux, it is not clear that the Deputy checker can deal

with many of the intricacies found in initialization of these structures;

for example, the f op field of a file may be freely changed so long as

its private data is NULL (Section 9.5.1).

Cyclone [12] is a C-like language that ensures memory and type
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safety, sharing many of the same features as CCured and Deputy. Point-

ers used in arithmetic can be either fat as in CCured, or be associated

with a specific length as in Deputy. Casts are allowed in Cyclone, but

only from a subtype to a supertype [2]; downcasts are disallowed. Types

in Cyclone can be polymorphic [11] in a similar fashion to Deputy, again

handling many of the polymorphic structures we have seen in Linux and

removing the need for many downcasts. Still, Cyclone requires that the

type over which a polymorphic structure is instantiated be set at the

creation point of the structure, which will break on initializers such as

the file open example (Section 9.5.1).

Our approach to modeling polymorphic structures is more indirect

than the approaches used by Deputy and Cyclone, and does not try to

associate type variables with the structure declarations and concrete

type instantiations at each point the structure is used. This lets us

handle cases such as the file open example, as we do not have to fix

a type to a file at the points where it in fact has no type.

10.3 Logic programming based analysis

Datalog and other logic programming languages have repeatedly been

used for expressing program analyses [8, 10, 23, 30].

A challenge with Datalog is that while it is great for problems based

on graph and set abstractions, it is a poor tool for modelling other

abstractions such as boolean constraints. The previous applications of

Datalog in program analysis have focused on problems expressed using

sets and graphs, in particular pointer analysis [10, 30]. We are able

to use more complex abstractions using predicate-based interfaces for

calling into external solvers and other code (Section 2.3).

Constraint logic programming languages [15] fold constraints into
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the language itself, such that the truth of a predicate instance depends

on the satisfiability of a set of constraints. We do not go this far, as the

great majority of predicates we construct do not depend on constraints.

For those predicates involved with constraints, we can get a similar

behavior (if not brevity) to a constraint logic programming language

with extra constraint arguments to predicates (e.g. guard and val from

Section 3.3).

10.4 Escape analysis

The information we need from our escape analysis is largely covered by

the timer list example from Section 5.1. Can we track the points to

which a location might flow through a series of assignments, without

conflating that location with other locations flowing to the same points?

There is a great deal of work in this area.

Traditional escape analysis algorithms focus on dynamic allocations,

and are primarily concerned with which call frames new locations might

escape from (if data can’t escape the frame it is allocated in, it can be

stack allocated). These analyses originated with Ruggieri and Murtagh

[24], and have largely been applied to garbage collected languages for

use in optimization, including both functional languages [22] and Java

[9]. These analyses can be quite precise intraprocedurally but provide

very little information when a value does escape the function which

allocated it.

Points-to analysis performs a global rather than per-function anal-

ysis of the target program and can generate the extra information we

need in cases where a location escapes a function. Points-to analyses fall

into two general categories, either unification based, as originally de-

scribed by Steensgaard [27], or inclusion based, as originally described
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by Andersen [4].

Unification based analyses unify the locations referred to by the

source and target of all assignments in the program. In the context

of the timer list example, this will unify each timer list in the

program with the timer list manipulated by run timers, and hence

transitively unify each timer list with every other timer list, which

is unacceptably imprecise.

Inclusion based analyses give the effect of only propagating infor-

mation in assignments in one direction, and will let us distinguish the

different timer list structures from one another. Banshee [16, 17], a

system for building constraint based analyses, has been used to build

inclusion based analyses that scale to Linux. This analysis is field-

insensitive, though; it ignores any distinctions between the different

fields of a structure, which is again unacceptably imprecise.

Heintze and Tardieu describe an inclusion based analysis that in-

corporates fields and scales to programs the size of Linux [14]. This

algorithm is completely demand driven, but has the chief drawback

(from our perpsective) that it flattens all structures of the same type

together — the different fields of a timer list can be distinguished,

but not different declarations of structures of type timer list. If our

escape analysis is run following forward edges at its minimal level of

precision, it will compute pretty much the same information as [14]. In

many (even most) cases this is all we need, but there also many cases

that demand more precise results.

Sridharan et. al. give a similar demand driven analysis for program

slicing that runs backwards rather than forwards and can distinguish

different instances of the same type [26]. However, when indirection is

used in the program a points-to analysis is needed to continue propaga-

tion (e.g. while tracking y and seeing x.f := y, the analysis propagates
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to all w.f such that w may alias x). Reliance on such a points-to anal-

ysis again introduces the problem of getting such an analysis to scale

up at a sufficient level of precision.

What allows us to use a purely demand driven algorithm as in [14]

while still handling multiple levels of indirection is being able to follow

assignment edges both backwards and forwards when there is indirec-

tion. This will exhaust the space of points the location could flow to or

have flowed from, without falling back on eagerly computed unification

or inclusion points-to information.

10.5 Memory analysis

The local memory model (Section 3.3) that forms the basis of most of

our later analyses is based on that in the original version of Saturn by

Xie and Aiken [31]. This approach of using a path-sensitive analysis

intraprocedurally while aggressively summarizing at function bound-

aries is currently unrivalled in its ability to scale to arbitrarily large

programs while retaining high function-level precision.

The changes we have made to this memory model are primarily

to perform sound analysis of functions while still retaining the needed

scalability and precision.

• Instead of analyzing loops by unrolling them a bounded number

of times, we convert loops to tail recursive functions and fixpoint

their summaries, computing all possible behaviors of the loop.

• Instead of treating all incoming locations as non-aliased, we ac-

count for possible aliasing using the involved fields, pointer types,

and escape information for the locations.
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• Instead of treating function calls as modifying nothing, we con-

servatively clobber locations if we cannot prove they won’t be

clobbered due to the modifies set of the function being called or

fields in the location.

In previous work [13] we found that aliasing is used only to a limited

extent in systems software. This has continued to be our experience

evaluating the casting analysis (Section 9.3.2), with the exception of

highly specialized data structures such as the Sysfs filesystem control

structures (Section 9.5.3).

Characterizing modifies information on functions is, in our experi-

ence, a far harder problem, though our function- and field-based ap-

proach has worked well enough for the casting analysis. Our semi-pure

fields are very similar to the stationary fields described by Unkel and

Lam [29]. Our definition and inference is less restrictive and allows

reads at any point on a semi-pure field, and for semi-pure fields to be

written after heap objects have been updated to point to the contain-

ing structure. Our findings that roughly half of the fields in Linux are

semi-pure are consistent with the experience of [29].
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Conclusion

Big software systems are tremendously complex with all their details

taken together. By focusing on downcasts we are able to peel away and

characterize a small portion of this complexity, not just whether a given

cast is correct but how component interfaces and control structures in

Linux are designed.
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